
The Super Widget Package

Creating serious GUI interfaces!

Introduction to the package

The  Super  Widget  Package  (SWP)  provides  a  very easy-to-use mechanism to  unleash the power  to  create  Graphical  User

Interfaces (GUI's) via J/Link. It was originally based on the GUIKit, although since version 4.00 it no longer relies on that

technology. It enables you to construct beautiful GUI interfaces to your Mathematica programs with the absolute minimum

of effort.

The GUIKit is very powerful, in that it gives you access to the entire power of the Java graphical user interface. However, it

is essentially a low level tool. It would take a lot of work to construct a serious Mathematica GUI application using GUIKit

(or J/Link), and a lot of that work would be highly repetitious.  It is important to realise that most of the pieces of example

code in the GUIKit help information are incomplete, in that they are not linked up with any Mathematica code – you would

need to add  various BindEvent  structures,  which can quickly become quite complicated.  The  super widgets take all  the

typical component tasks of creating a GUI – such as displaying a variable in an editable box – and package them as neatly as

possible.

The main design considerations for the Super Widget Package are:

è Extreme ease of use – I want even beginner Mathematica users to have access to GUI interfaces.

è  Very  traditional  Mathematica  syntax  –  e.g.  no  string  option  names  are  used,  because  you  can't  look  them  up  with  '?'.

Likewise, colours are specified in the traditional way – e.g. using RGBColor.

è Absolutely no knowledge of Java should be required, except in order to use a few specialised advanced features.

è A very compact GUI notation.

The  Super  Widget  Package  is  tested  using  Mathematica   6.0,  7.0,  and  will  be  upgraded  as  necessary  to  support  future

versions of Mathematica. Support for 5.2 was dropped at version 4.50, please contact the author if this is a problem.

Changes introduced at version 4.00

The SWP used to be based on the GUIKit.  SWP code  was translated into equivalent GUIKit  code,  plus some J/Link code

and compiled Java. As the SWP progressed,  more and more of its functions were performed by Java code – bypassing the

GUIKit. At version 4.00 the GUIKit is no-longer used by the SWP. The main consequence of this is that GUI applications

operate considerably more efficiently. This change has also opened the way to much further development which would have

been  difficult  or  impossible  while  using the  GUIKit.  Unfortunately,  users  should  note  that  it  is  no-longer  possible  to  mix

GUIKit  widgets  with  SWP  code.  Although  this  was  possible  with  earlier  versions,  I  have  not  heard  of  anybody  actually

using this facility.

These  changes  have  also  made  it  much  easier  to  extend  the  SWP  in  new  directions  –  possibly  as  part  of  projects  with

customers. 

The Super Widget Package 1

©2006 David Bailey



Getting started with the Super Widget Package

Installing the package

The SWP is supplied as a ZIP file containing all the files required in their appropriate  directories..  It is vital that this direc-

tory structure  is  preserved.  Copy the file  either  to  the directory  specified  by $BaseDirectory,  or  $UserBaseDirectory  (as  a

general rule, use the former if you are the sole user of the computer, use the latter if several people log on to your machine).

Do      not       use       the       Mathematica  directory                itself,           as     was        recommended                        in     previous               SWP          releases,               and        ensure            that        you        remove

any       previous                version              of     the       SWP          located              there.   Unzip  the  file  SuperWidgetPackage.ZIP  using  a  tool  that  preserves  the

directory  structure  and  handles  long  names  correctly,  e.g.  PKZIP(R)   Version  2.50,  or  WinZip(R).  Never           add        or     remove

anything              from         the       SuperWidgetPackage                                    directory                or     any       of     its     subdirectories, as this can disturb the operation of the pack-

age.

 You can access the help by opening the Documentation Centre, and clicking in the "Installed Addons" link (bottom right of

the window).

The examples in this guide are mostly very small – designed to illustrate a single point. A collection of rather larger exam-

ples is available at http://www.dbaileyconsultancy.co.uk/swp_examples/swp_examples.html. You are recommended to study

these examples to understand the use of the SWP in a more realistic context.

Loading the package

The SWP may be loaded thus:

Needs@"SuperWidgetPackage`"D

Loading this package automatically loads J/Link.

This checks the SWP version number.

SuperWidgetVersion@D

6.24

Simple use

Here is a very trivial SWP example:

Needs@"SuperWidgetPackage`"D

88"Hello World from"<,
"The SWP!"< êê SuperGUIRunModal

Alternatively,  here  is  a  very  slightly  more  complicated  example  that  looks  a  lot  more  attractive  because  the  text  and  the

button are laid out sensibly:

Needs@"SuperWidgetPackage`"D

2 The Super Widget Package

©2006 David Bailey



8¶10,
8¶0, "Hello World from", ¶0<,
¶10,

8¶0, "The SWP!", ¶0<,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<,
¶10< êê SuperGUIRunModal

Special support for versions 5 and 6

Under  versions of  Mathematica  prior  to 6,  graphics functions such as Plot  created  a  visible plot  as a  side-effect of  their

operations,  while returning a graphics structure as their formal result. This structure could be displayed subsequently using

the Show  command. Under  version 6, graphics does not rely on side-effects – a graphics structure is displayed as such by

the frontend. Although this manual is mainly concerned with GUI graphics, in a few places the function V6ÒShow is used to

smooth over these differences. V6ÒShow is defined in the Super Widget Package, but is really only useful in the context of

this manual.

Some basic GUI concepts
This  section  contains  a  brief  overview  of  GUI  terminology.  While  this  user-guide  avoids  jargon  where  possible,  various

terms with a particular meaning in this context are underlined as they are defined, and will be useful in what follows.

A program is said to  have a Graphical                User         Interface (GUI)  if it  communicates with the user  via a windowed interface so

that  the  user  fills  data  into  boxes,  and  uses  buttons,  menus,  etc.  Although the  Mathematica  front  end  is  obviously  a  GUI

application  itself,  programs  written  in  Mathematica  code  have  traditionally  not  been  able  to  offer  a  full  GUI  interface  to

their users.

A  typical  GUI  window  contains  many  individual  components  –  such  as  menus,  buttons,  data-entry  boxes,  icons  (small

images),  etc. Each of these entities is known as a widget. This  terminology is traditional  in the Unix world, however Win-

dows programmers typically refer to widgets as 'controls'.

Using  the  GUIKit,  it  is  possible  to  assemble  collections  of  widget  definitions,  together  with  some  layout  information  to

create complete windows, which are displayed using the J/Link Java interface. A complete GUI application may consist of

one or more windows, which may be displayed simultaneously, or at different times as the program executes.

GUIKit  widget  definitions  can  become  quite  complicated  by  the  time they are  actually  ready  to  use.  For  example,  if  you

look  up  the  "TextField"  widget  in  the  GUIKit  help  it  looks  fairly simple  to  code,  but  does  not  actually transmit  any user

input  back to  the Mathematica  program without considerable  additional  complications!  This  is  partly because  the  GUIKit

The Super Widget Package 3

©2006 David Bailey



input  back to  the Mathematica  program without considerable  additional  complications!  This  is  partly because  the  GUIKit

reflects the underlying Java classes, which require a Java program to make them do anything useful. 

The SWP enables GUI's to be built using super widgets, which are very much easier to construct than GUIKit widgets, and

also  offer  considerable  extra  functionality.   In  what  follows,  the  SWP  will  be  explained  with  very  little  reference  to  the

underlying Java or J/Link – the technologies that underlie the SWP.

GUI  windows can  be  either  modal  or  modeless.  A modal  window takes  control  when it  is  displayed  (the  program can  be

thought of as entering a different mode while the window is visible) and other windows in the same application are rendered

temporarily inactive.  If you alter  a notebook and then try to close  it  without saving it  you will see  an example of  a modal

window –  you  have  to  press  one  of  its  buttons  before  you  can  proceed.  Conversely,  the  Mathematica  palettes  are  good

examples of modeless windows. A palette can sit about for as long as you like, ready to use when required. When you create

a modal window, the window (if any) that 'caused' the event (say by pressing a button) will be disabled for the life-time of

the new window. This means that its widgets will not respond and that it cannot overlay the new window. This is, of course

exactly  what  is  required  by  a  modal  window,  because  it  must  be  attended  to  before  the  program  can  proceed.  From  a

programming point of view, when you create a modal window, you pass control  to that window, and you only gain control

when the window closes. This means that a function that creates a modal window can return a result.

Widgets  and  menu items are  not  always usable.  For  example,  there  is  no  point  in  activating  a  file-save  widget  if  there  is

nothing to save! While it would be possible to simply ignore such 'user mistakes' – or even generate an error message –  this

is  not  very user-friendly.  You  must anticipate  that  your  user  will  explore  your  program,  clicking all  over  the  place  to  see

what happens. It is for this reason, that most GUI applications disable widgets or menu options when they can't currently be

used.  This  is  also  sometimes  known as  'greying  out',  because  the  relevant  item  is  rendered  in  a  faded  fashion,  and  does

nothing if clicked.

All  the  individual  widgets are  stored  in  one  big  widget,  which represents  the  window itself  –  think of  it  as  a  widget  box.

There are two possibilities – a frame window or a dialog window. Traditionally, dialog windows tend to be used for modal

interactions,  but  either  window can  be  modal  or  modeless.  The  dialog  window is  actually  rather  less  flexible  because  it

cannot have a menu, and cannot be minimised or maximised. However, if you are putting up a simple query or information

box, maximisation and/or minimisation are inappropriate, and a dialog box looks better.

If you look at  a typical GUI window – such as a notebook,  you will see that it contains two active points.  There  will be a

mouse cursor, which will obviously move as the mouse moves, and the so-called caret – a vertical bar  which indicates the

point  at  which keyboard input  will appear.  The place  to which keyboard data  will be sent is said  to have input focus. The

input focus can be moved from widget to widget by clicking with the mouse (but not by mere mouse movements)  – thus it is

normal  to  click  into  an input  field  in order  to  adjust  its  value.  The  input  focus can  also  be  moved using the  Í  key. It  is

instructive to try this. You will see that the input focus cycles round the various widgets (but not all can accept input focus).

In  particular,  the  input  focus can  be  moved to  a  button.  In  this  state  the  button  is  emphasized  in  appearance,  and can  be

'pressed' by using the Û or Á keys.

When constructing a GUI interface, it is important to make it look as much like other simple GUI applications as possible. A

lot of the value of a GUI interface is that a user can guess how a program will behave, using his or her experience with other

applications.  Thus, for example, the file/open/save/print/exit  menu in the left-most position is very traditional,  nobody will

thank you for putting these menu items in another location! Traditional  GUI's also frequently supply several ways of doing

the same operation. For example, it may be possible to specify a file/save operation via the menus or using the toolbar. This

makes sense because people vary greatly in the ways in which they prefer to interact with a GUI.

The more you critically examine a typical GUI, the more complexity you will find. Fortunately, most of this functionality is

catered for by the default settings of the super widgets, and the job is less daunting than it might at first appear.

4 The Super Widget Package

©2006 David Bailey



Using Simple Super Widgets

Introduction

The  super  widgets  are  all  completely  inert  (analogous  to,  say,  the  RowBox)  until  passed  to  the  SuperGUIRun  or

SuperGUIRunModal  functions.  Use  SuperGUIRunModal  unless  you  specifically  require  the  modeless  properties  of

SuperGUIRun. In this case, please read the section on the restrictions that apply to modeless windows.

Every super  widget  is  set  up  with attribute  HoldFirst.  The  first  argument of  each  super  widget must be  the  name of  a

Mathematica variable,  or (as of version 4.70) an simply indexed array - such as x[[5]].  This variable, known as the associ-

ated       variable is used to identify the widget and to hold the data  represented by the super widget. Even widgets that do not

have  associated  data,  still  require  an  associated  variable  as  the  first  argument.  It    is     extremely                  important                 that        a    different

associated                 variable               is    used         for      each         super          widget. Sometimes the associated variable is not useful, and in these cases it can

be coded as Null, and the SWP will invent a suitable (unique) replacement.

Most super widgets can take a variety of options. These options are traditional symbolic options, and can be examined and

adjusted using Options and SetOptions.

Tip!  Many  super  widget  arguments  or  options  are  the  names  of  functions.  These  functions  are  typically  called

when  some  action  is  required  –  say  in  response  to  a  button.  Since  most  of  these  functions  need  to  be  defined  with  the

HoldFirst attribute, the SWP does not accept pure functions in these places. There is a syntax available to define a pure

function with attributes, but this is quite clumsy.

SuperGUIRun and SuperGUIRunModal

SuperGUIRun@widgets,optsD Displays one or more super widgets as a modeless window, and 

returns to the program immediately. Modeless windows are excep-

tional – use SuperGUIRunModal is in doubt.

SuperGUIRunModal@widgets,optsD Displays one or more super widgets as a modal window, and returns 

when the window is ultimately closed. The return value is Null, or the 

button number or ReturnÒAction that closed the window (see below). 

Functions to display super widgets

Both these functions take a widgets argument. This can be a single super widget, or a list (usually nested) of super widgets

mixed  with  layout  and  ancillary  information.   Alternatively,  the  widgets  argument  may  consist  of  one  SuperWid�

getFrame or SuperWidgetDialog (which represent whole windows – see below), each of which contains an embed-

ded list of the super widgets inside them.

The Super Widget Package 5

©2006 David Bailey



ConcealNotebooks Option for SuperGUIRunModal. Hides the notebooks while the GUI 

is on display. Read the notes about this option before use.

OnÒDisplay Option for SuperGUIRunModal only. Specifies a function with no 

arguments that is to be called immediately after the GUI has been 

displayed. Note that this option is not available for SuperGUIRun – 

where it would serve no purpose.

Options for SuperGUIRun and SuperGUIRunModal

SuperGUIRunModal  can  take  the  ConcealNotebooks  option.  This  hides  the  currently  open  notebooks  before

displaying the window (so the notebooks cannot obscure the window) and restores the notebooks afterwards. This option is

best used in fully debugged applications, as there is a chance that if your window hangs, you will have difficulty recovering

your notebook (assuming it contained unsaved material).

It is generally much safer and easier to use SuperGUIRunModal rather than SuperGUIRun, unless you genuinely want

to  continue doing something while the  GUI is  on display.  If  you need  to  perform a  fairly quick  task after  the GUI is  dis-

played,  it  is  recommended that  you use the  OnÒDisplay  option to  supply a  startup function.  The GUI will not  become

fully responsive until after any startup function has completed.

SuperWidgetIntegerBox, SuperWidgetRealBox, SuperWidgetStringBox

SuperWidgetIntegerBox@v,optsD Displays the decimal integer in the associated variable v in a text edit 

box. As the user edits the number, the value of v changes.

SuperWidgetRealBox@v,optsD Displays the machine real in the associated variable v in a text edit 

box. As the user edits the number, the value of v changes.

SuperWidgetDecimalBox@
v,ndigs,optsD

Displays the machine real in the associated variable v in a text edit 

box, but with a fixed number – ndigs – of digits after the decimal 

point. Exponent form is not permitted. As the user edits the number, 

the value of v changes.

SuperWidgetStringBox@v,optsD Displays the string in associated variable v in a text edit box. As the 

user edits the string, the value of v changes.

Basic data input widgets

6 The Super Widget Package

©2006 David Bailey



ChangeFunction 1-Argument function to call with the associated variable each time 

the user alters the data

.

CharacterÒWidth Specifies the number of character positions used for the box.

Editable Set False to create a data box that can only be modified by code – not 

by using the mouse/keyboard.

SelectÒAll Set True to cause the entire box to be initially selected – this means 

that typing into the field will cause the selection to be deleted.

ToolÒTip Supplies a tool-tip (helpful string) to be displayed when the mouse 

enters the box.

ReturnÒAction Action to be taken if the user

presses the Û or Á while the widget has

focus. Set to an integer to cause the window to close with that as the

return value, or supply the name of a function to be called

with the widget associated variable as argument. Enabling

data input windows to close in this way is very convenient

because the user's hands are already on the keyboard.

Stretch Default 8False,False< – determines if

the widget can expand in the horizontal and vertical

directions to fill space. For one-line controls of this sort,

it can be useful to specify 8True,False<,

but specifying vertical stretch is not useful.

Options for the basic data input super widgets

These four super widgets create an edit box specialised to accept data of a particular kind. They take an associated variable

which should start off either with no value, or with an integer/real/string value as appropriate.  The widget will use the value

of v  for  initialisation, or  will start  off blank. As the user changes the value, the associated variable,  v  will update,  and the

option  ChangeFunction  can  be  used  to  execute  code  each  time  the  variable  is  updated.  Note  that  since  the  value  is

automatically  transmitted  to  the  associated  variable,  the  ChangeFunction  option  is  typically  only  required  for  more

complex applications.

Note  that  there are  two super  widgets for  real  numbers.  SuperWidgetRealBox  is  useful for  regular  real  numbers,  and

can  handle  exponents,  whereas  SuperWidgetDecimalBox  handles  reals  that  have  a  specific  maximum  number  of

decimal digits – such as currency. Numbers are right-aligned in the SuperWidgetDecimalBox.

Remember to load the SWP package before executing the following example. First, we turn on snapshot mode (explained in

detail later) so that we can record an image (typically a little larger than the live GUI) of the resulting window:

Needs@"SuperWidgetPackage`"D

SetSnapshotMode@TrueD

The variable x will get passed to the function f each time the user changes the number. A complete program might contain

many SuperWidgetRealBox  widgets, so it is useful to give f  the attribute HoldFirst  so that it is possible  to deter-

mine which widget changed as well as its value. 

The Super Widget Package 7

©2006 David Bailey



SetAttributes@f, HoldFirstD;
f@a_D := Print@HoldForm@aD, "=", aD;
x = 100.5;

8SuperWidgetRealBox@x, ChangeFunction → fD< êê SuperGUIRunModal

x=100.54

x=100.544

GetSnapshots@D êê V6ÒShow

Note the ReturnÒAction option. You can give your user a better experience if you use this option. The data supplied by

this option is exactly analogous to the third argument of SuperWidgetButton.  It  enables you to make the  Û  or  Á

keys mimic the action of a button – typically the button which marks successful completion of the data entry process. If your

window contains  multiple  data-entry  super  widgets,  it  is,  of  course,  sensible  to  use  the  same value  for  the  ReturnÒAc�

tion option in each case.

For  more  advanced  manipulation  of  basic  data  input  widgets  see  the  section  "Dynamic  manipulation  of  basic  data  input

widget properties".

Layout

The layout mechanism is derived almost completely from the GUIKit,  on which the SWP used to be based.  Super widgets

are  combined  by  using  a  list.  A  simple  list  of  super  widgets  (or  indeed  GUIKit  widgets)  are  displayed  vertically.  For

example:

Needs@"SuperWidgetPackage`"D

8"AAA", "BBB", "CCC"< êê SuperGUIRunModal

GetSnapshots@D êê Show;

Note that this example uses the fact that simple text strings are converted to SuperWidgetLabel  objects  and displayed

as read-only text.

If you embed super widgets in nested lists, the layout flips between vertical and horizontal. For example:

8"AAA", 8"BBB", "CCC"<< êê SuperGUIRunModal

8 The Super Widget Package

©2006 David Bailey



GetSnapshots@D êê Show;

Within  the  lists,  super  widgets  are  spaced  out  using  ¶10  (the  size  of  the  gap,  10  is  arbitrary,  but  seems  to  produce  good

results in most cases – use a bigger or smaller value as required). The spacing will be horizontal or vertical according to the

list  nesting.  While  this  notation  may seem rather  cryptic,  real  GUI's  often  require  a  lot  of  spacing  to  look  right,  and  the

standard GUIKit notation – WidgetSpace[10], (which will also work) can become extremely cumbersome.

Tip!  Your window will look more attractive if you use one, or at most two, different fixed-width space elements.

You may achieve this by assigning a variable – such as sp – thus:

sp = ¶10

Using this variable where space is required will ensure consistency and make it easy to adjust the spacing later, if required.

The  notation  ¶0  has  a  special  meaning,  it  corresponds  to  the  GUIKit  WidgetFill[]  and  supplies  filling  space  as

required. Thus, you get right justification by filling from the left:

8"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", 8¶0, "something"<< êê SuperGUIRunModal

GetSnapshots@D êê Show;

It  is  particularly  useful to  fill  from both  the left  and the right  to  produce  a  centred  widget.  This  is  well illustrated  using a

button super widget that will be described in full later:

8¶10, 8¶10, "This is a small message box", ¶10<, ¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10< êê SuperGUIRunModal

1

The Super Widget Package 9

©2006 David Bailey



GetSnapshots@D êê Show;

Note that simple message boxes like this are more easily produced using the ShowMessageBox function, described later.

Another  useful  layout  feature  is  the  GUIKit  WidgetAlign[],  which  can  be  represented  more  neatly  using  Í.  For

example:

88"aa", Í, "bbbbbbbbbbbbbbbbbbb"<, 8"aaaaaaaa", Í, "bb"<, 8"aaaaaaaaaaaaaa", Í, "bb"<
< êê SuperGUIRunModal

GetSnapshots@D êê Show;

All the 'b' strings have been forced to line up because of the tabs.

By default, some super widget types are stretchable  (e.g. graphics panels),  while others are not.  The option Stretch  can

be  used  to  override  this  default  as  required.  For  example,  Stretch->{True,False}  indicates  that  the  widget  in

question can be stretched horizontally but not vertically. Note that not all widgets can be meaningfully stretched.

More  complex  layouts  are  possible  using  SuperWidgetPanel,  SuperWidgetLabelledBox,  and  SuperWid�
getTabPanel

SuperWidgetHorizontalSeparator / SuperWidgetVerticalSeparator

These two super widgets can be used to 'score' a line into a window in such a way that they act as a separator. These should

not be used on windows with a white background.

SuperWidgetHorizontalSeparator@
v,optsD

Displays a horizontal scored line that acts

as a separator. The variable v is not currently used.

SuperWidgetVerticalSeparator@
v,optsD

Displays a vertical scored line that acts as

a separator. The variable v is not currently used.

The separator super widgets

10 The Super Widget Package

©2006 David Bailey



SuperWidgetHorizontalSlider / SuperWidgetVerticalSlider

SuperWidgetHorizontalSlider@
v,min,max,optsD

Displays a horizontal slider widget to represent real

values between min and max. If v has an initial value,

it is used to set the slider initially,

otherwise it starts at the half-way point. The

associated variable v is updated when the slider is moved,

and if the ChangeFunction option is used, the supplied,

function is called with the v as argument.

SuperWidgetVerticalSlider@
v,min,max,optsD

Displays a vertical slider widget.

The Slider super widgets

ChangeFunction 1-Argument function to call with the associated variable each time 

the user alters the data

.

SliderÒLabels Supplies a list of label values to be used to annotate a slider. Tick 

marks are also added if this option is used.

SnapÒToÒTicks Set to True to cause the slider to snap to the nearest tick position 

when the mouse is released. Also causes the slider to delay reporting 

until the mouse button is released.

TickÒRatio Ratio of major to minor tick spacing – default 5. Set this value to 1 to 

effectively remove the minor ticks

ToolÒTip Supplies a tool-tip (helpful string) to be displayed when the mouse 

enters the box.

The displayed tool tip is concatenated with the current value.

ZoomÒMenu When this option is set to True,

the slider can be made to zoom using a right

mouse click Hor equivalent on non-Windows platformsL

to bring up the zoom menu. This option generates its

own labels – do not use with the SliderÒLabels option.

Options for the Slider super widgets

The slider super widgets take a Real-valued associated variable followed by the min and max values. As the slider is moved,

the variable updates, and if the ChangeFunction option has been used, that is also called:

Needs@"SuperWidgetPackage`"D

The Super Widget Package 11

©2006 David Bailey



SetAttributes@foo, HoldFirstD;
foo@x_D := Print@Unevaluated@xD, "=", xD;
y = 0.4;

SuperWidgetHorizontalSlider@y, 0, 1.0, ChangeFunction → fooD êê SuperGUIRunModal;

y

y=0.4

y=0.4032

y=0.4194

y=0.4247

y=0.4301

y=0.4355

y=0.4462

y=0.457

y=0.4462

y=0.4409

y=0.4301

y=0.4247

y=0.4194

y=0.4086

y=0.4032

y=0.4032

0.4032

GetSnapshots@D êê Show;

The ZoomÒMenu option enables you to use sliders in a variety of interesting ways. Here is a very trivial example in which it

is used to 'manually' find the root of an equation:

12 The Super Widget Package

©2006 David Bailey



Clear@fD;
labelText@D :=

H
ImageÒExpression@StyleForm@SequenceForm@"x= ", NumberForm@xÒval, 810, 10<D,

", Sin@xD= ", NumberForm@Sin@xÒvalD, 810, 10<DD, FontSize → 18DD
L

f@x_D := SetÒLabelÒContents@xxx, labelText@DD;
xÒval = 3.0;

8
¶10,

8¶0, SuperWidgetLabel@xxx,
labelText@D, LabelÒAlignment → Center, PixelÒWidth → 450D, ¶0<,

¶10,

8¶0, SuperWidgetHorizontalSlider@
xÒval, 3.0, 3.5, ChangeFunction → f, ZoomÒMenu → TrueD, ¶0<,

¶10

< êê SuperGUIRunModal

By moving the slider until the value of Sin[x]  is closest to zero,  and then right clicking on the slider to zoom it  in, it  is

possible  to  home  in  on  the  root  of  Sin[x]==0  (i.e.  p)  with  steadily  increasing  accuracy.  The  image  shows the  display

some way into this process. Although there is not much point in using this method for root finding, zoomable sliders can be

very useful in other situations in which the location of interest is less easily characterised – for example, finding the value of

a parameter that just makes a fractal disconnected.

Note that in the above example, the text is output as an image because the numbers are displayed in exponent form as the

zoom  progresses.  This  image  is  placed  in  a  SuperWidgetLabel  with  an  explicit  PixelÒWidth  to  allow  for  the

numbers to occupy a little more space if necessary.

SuperWidgetButton

SuperWidgetButton@
v,name,fn,optsD

Displays a button where name can be either a string or an image 

construct. When pressed, if fn is an integer, the button closes the 

whole window and returns that integer as an argument, otherwise s 

call is made to fn[v]. 

The Button super widget

The Super Widget Package 13

©2006 David Bailey



PressÒFunction Supplies a function to be called when the button is depressed (the 

normal action occurs as it is released again). Useful in push and hold 

applications.

Tool ÒTip Supplies a string to be displayed as a tool tip when the mouse enters 

the widget

.

Options for the Button super widget

This creates a button. The first argument is the associated variable (or Null), used to identify the widget, and the second is

the text (or image) of the button. This text string should contain only ordinary characters – not special Mathematica charac-

ters which cannot be displayed in Java, however, it is easy to convert Mathematica expressions as images, so this is no real

limitation. The final argument can be either an integer or the name of a function. Using an integer, the button will close the

whole window if it is pressed, and SuperGUIRunModal will return this integer as its result. This can be very convenient

in situations in which a window can be dismissed by one of several buttons. For example:

Needs@"SuperWidgetPackage`"D

SuperWidgetFrame@fr1, 8
WidgetSpace@10D,
8WidgetSpace@10D, SuperWidgetLabel@ll,

"Are you sure you want to reformat your disk?"D, WidgetSpace@10D<,
WidgetSpace@10D,
8WidgetFill@D, SuperWidgetButton@bb1, "Ok", 1D,

SuperWidgetButton@bb2, "Cancel", 2D, WidgetFill@D<,
WidgetSpace@10D

<
D êê SuperGUIRunModal

1

GetSnapshots@D êê Show;

This will return 1 if the 'Ok' button is pressed, 2 if the 'Cancel' button is pressed, and Null if the window is closed in some

other way.

Simple message boxes can be shown using an even simpler method using the function ShowMessageBox. For example:

ShowMessageBox@"Are you sure you want to reformat your hard disk?",

"Careful!", 8"OK", "Cancel"<D
1

14 The Super Widget Package

©2006 David Bailey



You can specify any number of buttons, and these produce return values of 1,2,... 

SuperWidgetFrame@fr1, 8
¶10,

8¶10, SuperWidgetLabel@ll, "Are you sure you want to reformat your disk?"D, ¶10<,
¶10,

8¶0, SuperWidgetButton@bb1, "Ok", 1D, SuperWidgetButton@bb2, "Cancel", 2D, ¶0<,
¶10

<
D êê SuperGUIRunModal

1

The third argument to SuperWidgetButton, which determines what the button actually does is often made the same as

the ReturnÒAction  option  used elsewhere in the window. This  makes it  possible  to mimic the pressing of  a button by

pressing the Á key. Typically you should arrange for this key to produce the same behaviour as pressing the 'OK' button. 

The option PressÒFunction creates a button with rather different functionality. Ordinary buttons do nothing as they are

pressed – the action happens as they are released. Indeed, if you press an ordinary button with the mouse and then move the

mouse off  the button before  you release  the key, you will release  the button without performing the corresponding  action.

The PressÒFunction is for cases where a button is to be pressed and held for the duration of a process. In this case the

function supplied to PressÒFunction  normally initiates some action, and the normal button function terminates it.  The

SWP ensures that in this case, if the button is pressed and the mouse leaves the button, the normal mouse click function is

called at that point. This ensures that such a button cannot be left stuck on.

The label of a button can also be an image (see Images) or a general HTML string (see Using HTML strings inside widgets)

to obtain more exotic effects.

Buttons may also be coloured after they have been created.  This is useful to designate which button has most recently been

pressed, or for other reasons. Light colours usually look best:

SetÒButtonÒColour@v,colourD Sets the colour of the button with associated variable v

The colour is combined with the ordinary button image, and the default is White.

SuperWidgetLabel

SuperWidgetLabel@
v,contents,optsD

Displays static text or an image, specified by contents. The associated 

variable may be supplied as Null, if not required.

The label super widget

The Super Widget Package 15

©2006 David Bailey



FontÒColor Mathematica colour specification He.g. RGBColor@....D for the text.

Font Font specification in the form 8Name,face,size<

LabelÒAlignment Specifies the horizontal alignment of the label contents. Defaults

to Left, but Center or Right can be specified.

PixelÒWidth Specifies the minimum width of the label in pixels – particularly

useful if the label contents may be replaced with a longer label.

Options for the label super widget

Most SuperWidgetLabels are not coded explicitly. Whenever you include a string (or an image – see below) in a list of

super  widgets, this is  translated into a  SuperWidgetLabel  before  it  is displayed.  However,  using the explicit  formula-

tion it is possible to adjust their properties using options.

The  super  widget  label  is  used  to  place  fixed  text  strings  in  a  GUI.  The  first  argument  –  the  associated  variable  –  is  not

really used at present, but it seemed more consistent to make this super widget follow the same convention as all the others.

Unlike the "label" widget (into which it resolves), the super widget uses the super widget default font (SWDF). This can be

adjusted by calling SetÒTextÒFont. Alternatively, the font may be set on a per-label basis by using the Font option. By

default,  the  SWDF  is  a  little  larger  than  the  default  Java  font.  The  FontÒColor  (or  FontÒColour,  for  UK  users!)

option can be used to specify the text colour using an RGBColor object. For example:

Needs@"SuperWidgetPackage`"D

SuperWidgetFrame@fr1, 8
¶10,

8¶10, SuperWidgetLabel@Null, "Are you sure you want to reformat your disk?",

FontÒColor → RGBColor@1, 0, 0D, Font → 8"Helvetica", "Italic", 16<D, ¶10<,
¶10,

8¶0, SuperWidgetButton@Null, "Ok", 1D, SuperWidgetButton@Null, "Cancel", 2D, ¶0<,
¶10

<
D êê SuperGUIRunModal

1

GetSnapshots@D êê Show;

If no special options are required, a label may be specified as a simple string.  For Example:

8"This widget contains", "nothing but text"< êê SuperGUIRunModal

16 The Super Widget Package

©2006 David Bailey



GetSnapshots@D êê Show;

Labels can contain newline characters ("\n"). In this case multiple lines of text are displayed with left justification.

The contents of a label can be changed by calling the function SetÒLabelÒContents,  subject  to the following restric-

tions:

è A text-label cannot be converted into an image-label (or vice-versa) by calling this function.

è Multi-line text labels (i.e. where the text contains newline characters) cannot be updated.

è Labels are not re-sized to fit their new contents (since the window is already on display at this point!) so make sure that the

initial  contents  are  large  enough,  or  (as  in  the  example  below)  that  the  label  will  be  stretched  by  the  layout  rules  to  an

adequate size.

In this example, the change function for the slider updates a label to indicate the value change.

xxx = 50.0;

foo@x_D := H
SetÒLabelÒContents@lll, ToString@xDD;

L;

SuperGUIRunModal@8SuperWidgetLabel@Null, "PressureHPSIL", LabelÒAlignment → CenterD,
SuperWidgetHorizontalSlider@xxx, 0., 100., ChangeFunction → fooD,
SuperWidgetLabel@lll, ToString@xxxD, LabelÒAlignment → CenterD

<D

GetSnapshots@D êê Show

Labels can also contain HTML strings – see the section on using HTML strings inside super widgets.

The Super Widget Package 17

©2006 David Bailey



Using images

ImageÒFile@file−nameD Represents an image stored in a file. Use

a complete path name rather than a local file name.

ImageÒExpression@exprD Displays static text or an image, specified by contents. The

associated variable may be supplied as Null, if not required.

ImageÒExpression@expr,formD Represents an image of the given expression

in StandardForm. Use HoldForm if you need to

display an expression that would undergo evaluation.

ImageÒBoxes@boxesD Represents an image of the boxes (e.g. created by ToBoxes).

ImageÒGraphics@gD Represents an image consisting of a 2 or 3-

D Mathematica graphics object.

ImageÒString@stringD Represents an image in the form of a string,

typically created by ExportString.

Image wrappers

So far the buttons and labels have all been textual. There are a number of places where super widgets can accept images as

well as strings. An image can just be a pretty image in a file, but it can also be an image of an expression – so that a button

or  a  label  can access  the  full  character  set  and expression  mechanisms of  Mathematica.  Images can be  represented  in  the

following ways:

è  As a  file,  e.g.  ImageÒFile["c:\\gifs\\test.gif"]. Jpeg,  PNG,  and GIF  files are  accepted,  and  GIF files can even be  ani-

mated!

è As an expression, e.g. ImageÒExpression[Sqrt[x+1]]

è As an expression in a particular form, e.g. ImageÒExpression[Gamma[x],TraditionalForm]

è As a box expression (typically created by ToBoxes), e.g. ImageÒBoxes[ToBoxes[Sqrt[x+1]]]

è As a graphics object (typically created by Plot, Plot3D, etc.).

è As a string, as generated by ExportString, e.g. ImageÒString[x]

These 'functions' do not evaluate in themselves, they merely represent an image in a super widget. For example:

Needs@"SuperWidgetPackage`"D

Clear@xD; SuperWidgetLabel@pp, ImageÒExpression@Sqrt@x^2 + 1DDD êê SuperGUIRunModal

Here is a more complicated example in which the value of both a text label and an image label are updated as the slider is

adjusted.

18 The Super Widget Package

©2006 David Bailey



Clear@fD;
aaa = 0.0;

doÒplot@D := ParametricPlot@8Cos@5 tD, Sin@H1 + aaaL tD<,
8t, 0, 2 π<, AspectRatio → Automatic, DisplayFunction → IdentityD;

xxx = doÒplot@D;
f@_D := H

xxx = doÒplot@D;
SetÒLabelÒContents@lll, ToString@aaaDD;
UpdateWidgetValue@xxxD;

L;

8SuperWidgetGraphicsPanel@xxxD,
SuperWidgetHorizontalSlider@aaa, 0,

10, ChangeFunction → f, SliderÒLabels → 80, 2, 4, 6, 8, 10<D,
SuperWidgetLabel@lll, ToString@aaaD, LabelÒAlignment → CenterD,
¶10

< êê SuperGUIRunModal

Using fonts

A SuperWidgetLabel can be defined to use a particular font (see above).  However, it is important to realise that these

are Java fonts, not Mathematica fonts. It is usually better  to set up a StyleBox object  using ordinary Mathematica fonts,

and then wrap the result in ImageÒBoxes.

SuperWidgetComboBox

SuperWidgetComboBox@
v,contents,optsD

Displays a combo box using the list of strings contents. The selected 

string is placed in the associated variable. 

The combo box super widget

The Super Widget Package 19

©2006 David Bailey



ChangeFunction Function that is called Hwith the argument vL each

time the user makes a new selection or edits the selection.

CharacterÒWidth Specifies the number of character positions used for the box. This is a

minimum size – if the list contains long strings, the box may be wider.

Editable Specifies if the user can type in a value or if

he can only select from a predetermined list HdefaultL.

ReturnÒAction Action to be taken if the user

presses the Û or Á while the widget has

focus. Set to an integer to cause the window to close with that as the

return value, or supply the name of a function to be called

with the widget associated variable as argument. Enabling

data input windows to close in this way is very convenient

because the user's hands are already on the keyboard.

ToolÒTip String to be used as a tooltip.

Options for the combo box super widget

This creates a combo-box – a small box that can drop down to display a set of alternatives (which must be strings). The first

argument is the associated variable. It is updated each time the user selects an item. Its initial value is not used. If the option

Editable->True  is used,  the user can also type in a value, which may or  may not be on the list.  The ChangeFunc�

tion option can be used to monitor the changes. The supplied function is called with the controlling variable as argument.

For example:

Needs@"SuperWidgetPackage`"D

SetAttributes@myFunc, HoldFirstD;
myFunc@x_D := Print@Unevaluated@xD, "=", xD;
x =.;

SuperWidgetComboBox@x, 8"Alpha", "Beta", "Gamma"<,
Editable → True, ChangeFunction → myFuncD êê SuperGUIRunModal;

x

x=Beta

x=Beta

Beta

GetSnapshots@D êê Show;

At version 3.40, the SuperWidgetComboBox acquired additional capabilities supplied by the following functions:

20 The Super Widget Package

©2006 David Bailey



ComboBoxÒIndex@varD Returns the index of the selected item in the combobox super widget 

associated with var  – only useful if Editable->False.

SelectÒAll@varD Selects all the text in the edit box of the combobox super widget 

associated with var  – only useful if Editable->True.

SetÒComboBoxÒList@var,listD Replaces the list of strings in the

combobox super widget associated with var.

LastÒFocusÒTime@varD Returns a representation in miliseconds of the time when

the widget associated with variable vvar last acquired focus.

Functions to manipulate combobox super widgets

The  contents  of  combo  boxes  can  be  defined  by HTML  strings  –  which provide  a  way to  use  images  in  such boxes.  For

convenience, the ChangeFunction of a combo box can call ComboBoxÒIndex to determine the item selected as a number

rather than a string. This function should not be called at other times or when the Editable option has been set.

SuperWidgetCheckBox

SuperWidgetCheckBox@
v,description,optsD

Displays a check box with the given description. The associated 

variable reflects the value as True or False.

The  check box super widget

ChangeFunction Function to call Hwith v as argumentL

each time the user changes the state of the widget.

ToolÒTip String to be used as a tooltip.

Options for the  check box super widget

This creates a check box with some associated text. It is used to obtain a simple boolean value. For example:

Needs@"SuperWidgetPackage`"D

v1 = True;

v2 = True;

v3 = False;

v4 = True;

8¶10,
SuperWidgetCheckBox@v1, "Function is continuous"D,
SuperWidgetCheckBox@v2, "Function has continuous derivatives"D,
SuperWidgetCheckBox@v3, "Function has poles in the complex plane"D,
SuperWidgetCheckBox@v4, "Function has zeros in the complex plane"D,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<,
¶10

< êê SuperGUIRunModal

1

The Super Widget Package 21

©2006 David Bailey



GetSnapshots@D êê Show;

SuperWidgetRadioButtonGroup

SuperWidgetRadioButtonGroup@
v,contents,optsD

Displays a group of radio buttons with names taken from the list 

contents. The associated variable is an integer indicating which 

button is currently pressed.

The radio button group super widget

ChangeFunction Function to call with v as argument, each time the user clicks one of 

the buttons.

Options for the radio button group super widget

This  creates  a group of  radio  buttons stacked vertically. Exactly one element of  this group will be  'on' at  a  time. The  first

argument is the associated variable, which should be initialised to an integer in the range of the number of alternatives. The

second argument is a list of strings which label these alternatives. As usual, the variable is updated as the user changes the

selection. The option ChangeFunction can be used to supply a function to obtain immediate feedback:

Needs@"SuperWidgetPackage`"D

SetAttributes@myFunc, HoldFirstD;
myFunc@x_D := Print@Unevaluated@xD, "=", xD;
x = 2;

SuperWidgetRadioButtonGroup@x,
8"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"<,
ChangeFunction −> myFuncD êê SuperGUIRunModal; x

x=4

4

If  a  list  of  just  one  string is  supplied,  this super  widget operates  slightly differently. In  this case  the variable  takes on  the

values 0 and 1, depending on whether the corresponding button it on or off. However, note that by convention, it is normal

22 The Super Widget Package

©2006 David Bailey



values 0 and 1, depending on whether the corresponding button it on or off. However, note that by convention, it is normal

to use a checkbox to represent this situation, since there are no mutually exclusive alternatives.

SuperWidgetProgressBar

SuperWidgetProgressBar@
v,max,min,str,optsD

Displays a progress bar with values between min and max – current 

value in v. The str argument is a string, whose use is described in the 

text.

The progress bar super widget

Tool ÒTip Specifies a toop tip string for the progress bar.

PixelÒWidth Specifies the width in pixels of the bar (default 150). The height of 

the bar is not adjustable.

Options for the progress bar super widget

This creates a progress bar that can be updated by changing the value of the control variable and calling UpdateWidget�

Value.  The  string  argument  will  be  used  is  a  call  to  StringForm[str,v]  to  generate  a  string  to  appear  in  the  bar.  Use  an

empty string to create an empty bar. Here is a simple example:

v = 0.;

8
8¶0, "Doing something", ¶0<,
8¶0, SuperWidgetProgressBar@v, 0., 10.,

"Value: `1`", ToolÒTip −> "Gibber", PixelÒWidth → 300D, ¶0<,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<,
¶10

< êê SuperGUIRun;

While@v ≤ 10 && ActiveÒWidgetQ@vD,
v = v + 1;

UpdateWidgetValue@vD;
Pause@1D;

D;
CloseÒFrame@vD;

In this example,  the  'task' whose progress  is  being monitored  is  simply simulated using Pause.  When  the progress  bar  is

complete,  the  entire  window is  removed  using  CloseÒFrame.  The  argument  to  CloseÒFrame  could  have  been  any

variable  controlling  a  widget  in  the  window,  v  just  happens  to  be  convenient.  In  this  case,  the  window  containing  the

The Super Widget Package 23

©2006 David Bailey



Ò Ò

v

progress  bar  can  be  closed  before  the  task is  complete,  so  the code  checks  that  v  is  still  controlling  an  active  widget  and

exits early if necessary.

More about associated variables

As you know,  every  super  widget  has  an  associated  variable.  This  association  has  many uses.  It  is  used  to  hold  the  data

corresponding  to  a  super  widget  (where  appropriate),  and  is  passed  to  the  ChangeFunction  as  an  argument.  If  you

specify that function with HoldFirst attribute, you can identify which super widget was responsible (so that you can use

the same change function for several super widgets).

Super  widget  definitions  can  become  quite  cluttered,  so  options  can  be  associated  ahead  of  time  with  the  corresponding

associated variable using the SetÒVariableÒOptions function. This can also be convenient because, for example, the

setting  for  the  ChangeFunction  option  is  really  associated  with  the  program  logic,  rather  than  the  GUI  itself.  If  an

option is specified ahead of time and in the actual super widget definition, the latter is used in preference.  Here is a trivial

example:

Needs@"SuperWidgetPackage`"D

p1 = 42.5;

SetÒVariableÒOptions@p1, ChangeFunction → fp1D;
SetAttributes@fp1, HoldFirstD;
fp1@x_D := Print@Unevaluated@xD, "=", xD;
SuperWidgetFrame@fr1, 8SuperWidgetRealBox@p1D<D êê SuperGUIRunModal

p1=42.54

Options are actually checked at the time the corresponding super widget definition is processed. It is also possible to change

the default options for one particular type of super widget using the standard Mathematica SetOptions function:

SetOptions@SuperWidgetLabel, FontÒColor → RGBColor@1, 0, 0DD;
88¶10, SuperWidgetLabel@ll1, "Some red text"D, ¶10<< êê SuperGUIRunModal

Return to default for the sake of the rest of the examples.

SetOptions@SuperWidgetLabel, FontÒColor → RGBColor@0, 0, 0DD;

Associated  variables  also  carry  the  enabled/disabled  state  of  a  super  widget.  By  default,  all  super  widgets  start  in  their

enabled state. However, by calling SetÒEnabledÒStatus,  you can switch between the enabled and disabled states. By

calling this function on an associated variable that has yet to be used, it is possible to set the initial state of a super widget.

Ideally,  your  program  will  ensure  that  no  part  of  your  GUI  interface  is  enabled  if  the  corresponding  action  would  be

inappropriate.

Interactive graphics

Introduction

The SuperWidgetGraphicsPanel lets you create genuinely interactive Mathematica graphics applications. 

Traditional  Mathematica  graphics  is  essentially  non-interactive  and  offers  only  rather  crude  animation  possibilities.  This

reflects  the  fact  that  early  versions of  Mathematica  were created  at  a  time when CPU performance  was such that  a  single

24 The Super Widget Package

©2006 David Bailey



reflects  the  fact  that  early  versions of  Mathematica  were created  at  a  time when CPU performance  was such that  a  single

plot could take many seconds to render. The SuperWidgetGraphicsPanel  displays conventional 2-D or 3-D Mathe-

matica  graphics objects,  such as those produced  by Plot,Plot3D,   etc.  and offers a variety of extensions to make them

interactive and animated. In particular, 2-D graphics objects can be augmented with additional graphics primitives – Graph�

icsÒRegion  structures  –  which control  the  interaction  with the  mouse.  In  the  simplest case,  a  program will  completely

replace the graphic (including any GraphicsÒRegion structures) each time it needs to update the display. On a modern

(say  2GHz)  machine,  this  generally  requires  about  a  second  –  depending  on  the  size  of  window used.  While  this  is  fast

enough for some purposes, it is also possible to add one or more arbitrary shaped 'icons' (sometimes referred to as 'sprites')

that float on top of the main graphics and can be moved about for very little cost. For example, the corresponding points on

two curves might be represented by a pair of moving icons.

SuperWidgetGraphicsPanel@
v,optsD

Displays  graphics panel, which initially contains the plot stored in 

the control variable v. 

SuperWidgetGraphicsPanel@
v,plot,optsD

Obsolete form, retained for compatibility. Displays  graphics panel, 

which initially contains plot, the given graphics object. 

Interactive graphics super widget

MouseMotionFunction Supplies a function of three arguments var,x,y which is called each 

time the mouse is moved. This should be used sparingly, as it is easy 

to impede the motion of the mouse by excessive computation.   

ResizeFunction Supplies a function of three arguments var,sx,sy which is called each 

time graphics area is re-sized. The arguments sx and sy represent the 

new data for ImageSize – you can use them to deduce how much 

space you have to draw into. The function must refresh the graphics 

with ReCalibrate->True.

DynamicÒToolÒTip Specifies that the graphics panel will support

a tool tip whose contents are computed as a function

of the mouse position whenever they are needed. This

function of three arguments var,x,y is called when needed, and should 

return a string result – see dynamic tool tips below.

Options for SuperWidgetGraphicsPanel excluding some obsolete options

Because interactive examples are inevitably a little more complicated,  let us start  with a display of a graph without mouse

interaction. Since we are not interested in using the mouse, the plot might as well be 3-dimensional:

Needs@"SuperWidgetPackage`"D

vv = Plot3D@Sin@x yD, 8x, 0, 4<, 8y, 0, 4<,
DisplayFunction → Identity, ImageSize → 8400, 400<D;

SuperWidgetGraphicsPanel@vvD êê SuperGUIRunModal

The variable vv is set up to contain the plot and also acts as the control  variable. This is, of course, precisely analogous to

other  super  widgets  such  as  SuperWidgetIntegerBox.  The  size  of  the  resulting  graphics  panel  (in  pixels)  is  deter-

mined  by  the  ImageSize  option  used  in  the  command (Plot3D  in  this  case)  used  to  create  the  graphic.  Note  the  use  of

DisplayFunction→Identity  since we (presumably) don't  want the plot  to appear  in the notebook  as  well as  in the

GUI.

At its very simplest, some interaction can, of course, be achieved by changing the graphic in response to other widgets in the

window. For example, in this example the 3-D graph changes in response to the menu:

The Super Widget Package 25

©2006 David Bailey



fÒsin@D := Module@8<,
vv = Plot3D@Sin@x yD, 8x, 0, 4<,

8y, 0, 4<, DisplayFunction → Identity, ImageSize → 8400, 400<D;
UpdateWidgetValue@vvD;

D;
fÒcos@D := Module@8<,

vv = Plot3D@Cos@x yD, 8x, 0, 4<,
8y, 0, 4<, DisplayFunction → Identity, ImageSize → 8400, 400<D;

UpdateWidgetValue@vvD; H∗ This has no effect if

executed before GUI is launched ∗L
D;

fÒsin@D;

SuperWidgetFrame@Null, 8
SuperWidgetGraphicsPanel@vvD<,

Menu → 88"Function", 88"Sin", fÒsin<, 8"Cos", fÒcos<<<<,
Title −> "3−D function plotter"D êê SuperGUIRunModal

Take care that each plot uses the same settings for ImageSize unless you are refreshing the plot within a ResizeFunc�

tion. In the latter case, you should set the new ImageSize to equal the size parameters passed to that function. If you set

the ImageSize to any other value, the result will be either clipped or not fill the window.

Note  that  SuperWidgetGraphicsPanel  used  to  take  the plot  as  its  second  argument, rather  than as  the value of  the

control variable. This was changed for consistency, but the obsolete form has been retained for compatibility and should not

be used in new code.

Graphics regions

Because  a  mouse  is  a  2-D  input  device,  2-D  graphics  can  enjoy  a  very  high  level  of  interactivity.  This  functionality  is

organised around the concept of the GraphicsÒRegion.

GraphicsÒRegion@v,
88x1,y1<,8x2,y2<,...<,optsD

Functions as a graphics primitive in 2-D graphics prepared for GUI 

display. The variable v is the control variable for the region. The 

second argument is a list of the vertices of a polygon defining the 

shape of the region. These coordinates should not be defined using 

Scaled or Offset constructs. GraphicsÒRegion constructs are inert 

except when interpreted as a graphic for a SuperWidgetGraphic-

sPanel.

GraphicsÒRegion construct

26 The Super Widget Package

©2006 David Bailey



ActionÒFunction Supplies a function of three or five arguments which is called each 

time the mouse performs an action as specified by the MouseÒMode. 

The first argument will be the control variable of the region, followed 

by x,y or x1,y1,x2,y2 depending on the drag mode.

MouseÒMode Specifies mouse behaviour in the region. Values include:

CliClickÒAction – Take action on mouse clicks (default).

LineÒDragÒAction – Show dragging operations with an XOR'ed line 

and take action when the mouse key is finally released.

RectangleÒDragÒAction – Show dragging operations with an XOR'ed 

rectangle and take action when the mouse key is finally released.

RegionÒDragÒAction – Dragging operations drag a copy of the entire 

region across the graphics area and take action when the mouse key is 

finally released. (Imagine, say, dragging electronic circuit symbols or 

musical notes across the graphics surface).

LeaveÒDraggedÒImage Used in conjunction with MouseÒMode->All to achieve a smoother 

visual effect in certain situations – see below.

Menu Supplies a menu that appears as a popup menu when the right mouse 

button is clicked (Windows) or an equivalent operation is performed 

in another environment. The menu structure uses the same scheme as 

used in the SuperWidgetFrame. Each menu function should accept 

one argument – the control variable of the region.

MouseÒCursor Specifies the name of a cursor to be used when the mouse is in the 

given region. Cursor names include "DEFAULT_CURSOR",  

"CROSSHAIR_CURSOR", "WAIT_CURSOR", 

"TEXT_CURSOR", "HAND_CURSOR". 

ToolÒTip Specifies a string to be used as a tool tip – displayed as the mouse 

cursor enters the region.

Options for GraphicsÒRegion construct

A GraphicsÒRegion can be any polygonal shape and can be of any size up to the size of the entire graphic. Graphic�

sÒRegion  constructs  can  be  geometrically  nested,  but  should  not  merely  overlap,  as  this  would  make  it  impossible  to

unambiguously assign a  region  to  every point.  Overlaps  are  not  faulted,  however,  as  in  some situations  it  may be  hard  to

avoid a slight overlap of regions, and the resultant ambiguity does not really matter. Each region can have its own cursor and

context  menu,  and  responds  to  the  mouse  in  a  way that  is  determined  by  the  MouseÒMode.  Line  and  Rectangle  dragging

operations must begin and end in the same region, but for MouseÒMode->RegionÒDragÒAction a copy of the entire

region will be dragged across the window.

The control variable of a GraphicsÒRegion is closely analogous to the control variable of a super widget. In particular,

it is possible to set up options for a GraphicsÒRegion ahead of time using SetÒVariableÒOptions.

With  MouseÒMode->ClickÒAction  mouse  clicks  are  simply reported  to  the  ActionÒFunction  for  the  region  in

which they occur, however the other MouseÒMode  options result in temporary changes to the window contents. Normally

these are removed just before the ActionÒFunction is called to respond to the situation. In many cases, the ActionÒ�

Function will replace the image in a way that corresponds to the temporary changes. In these situations, setting LeaveÒ�

DraggedÒImage->True will reduce the flicker by leaving the line, rectangle, or graphic at the end of the drag operation

ready for the ActionÒFunction to replace the graphic. Note that it is vital that if this option is used the graphic is indeed

The Super Widget Package 27

©2006 David Bailey



Ò Ò

Ò

Ò

ActionÒFunction

updated (using UpdateWidgetValue) otherwise inconsistent results will be observed.

If you do not require any explicit mouse interaction in a region, simply leave the MouseÒMode at its default of ClickÒAc�

tion, and do not supply an ActionÒFunction.

All of this is best illustrated with an example. We start with a list (fx) of {x,y} data points and define a function buildÒgraph

that sets up the global  variable  graph with a modified ListPlot.  Every point  in the ListPlot  is surrounded by a tiny

GraphicsÒRegion  with its own cursor and menu. This means that as you move the mouse cursor over the graph it will

change into a hand cursor near to each point. When this happens, a right click (or equivalent in non-Windows environments)

will display a 1-element context menu. Clicking on this will delete the point in question.

Needs@"SuperWidgetPackage`"D

fx = Table@8N@xD, x + Random@D − 0.5<, 8x, 0, 10<D;

buildÒgraph@D := Module@8<,
graph = ListPlot@fx, DisplayFunction → Identity,

ImageSize → 8600, 600<, PlotRange → 880, 10<, 80, 10<<D
ê. Point@pp : 8ll_List, ___<D :> Sequence @@ Map@Point, ppD

ê. Point@8x_, y_<D :> 8Point@8x, y<D, GraphicsÒRegion@
Evaluate@Unique@DD, Table@8x + 0.2 Cos@tD, y + 0.2 Sin@tD<, 8t, 0, 2 π, π ê 8<D,
MouseÒCursor −> "HAND_CURSOR", Menu → 88"Delete point", dp<<D<;

UpdateWidgetValue@graphD;
D;

dp@v_D := Module@8s<,
s = Cases@graph, 8_Point, GraphicsÒRegion@v, ___D<, ∞D@@1DD;

fx = DeleteCases@fx, 8s@@1, 1, 1DD, _<D;
buildÒgraph@D;

D;

buildÒgraph@D;
SuperWidgetGraphicsPanel@graphD êê SuperGUIRunModal

This is a simple example of genuinely interactive graphics. Note in particular that the PlotRange option has been used on

ListPlot. This is important because it is vital that the plot axes are the same from plot to plot (even if you delete an end-

point) otherwise the plot will jump about as the user manipulates it. If, for any reason, the PlotRange cannot be fixed, it is

vital to add the option ReCalibrate->True  to the call to UpdateWidgetValue.  This is expensive, which is why it

is not set by default, but it is vital that the SWP is told if the graphic scale changes in some way.

Since the control variables for the GraphicsÒRegion constructs in the above example are never given a value, it was not

necessary to give the function dp the HoldFirst attribute.

In the following, slightly more realistic example, points may be added with a left mouse button click or deleted (as above)

using the context menu.

28 The Super Widget Package

©2006 David Bailey



Clear@myPlotD;

addingPoints = True;

myData = 88Unique@D, 1, 1<, 8Unique@D, 4, 4<<;

dp@v_D := Module@8s<,
myData = DeleteCases@myData, 8v, _, _<D;
pp1 = myPlot@D;

UpdateWidgetValue@pp1D;
D;

myPlot@D := Module@8m, c, x, fitting = False, tmp, p1, p2<,
If@Length@myDataD > 1,

fitting = True;

tmp = FindFit@Map@Drop@�, 1D &, myDataD, c + m x, 8c, m<, xD;
p1 = 80, c< ê. tmp;

p2 = 810, 10 m + c< ê. tmp;

D;
Graphics@8

Map@8Point@Drop@�, 1DD, GraphicsÒRegion@Evaluate@�@@1DDD,
Table@8�@@2DD + 0.2 Cos@tD, �@@3DD + 0.2 Sin@tD<, 8t, 0, 2 π, π ê 8<D,
MouseÒCursor −> "HAND_CURSOR", Menu → 88"Delete point", dp<<D< &, myDataD,

If@fitting, 8RGBColor@1, 0, 0D, Line@8p1, p2<D<, 8<D,
Text@"Use the mouse to add points,\nright click on a point to remove it.",

85, 16<, 80, 0<, TextStyle → 8FontSize → 17<D
<,
DisplayFunction → Identity, ImageSize → 8600, 400<,
AspectRatio −> 0.6, Axes −> True, PlotRange → 880, 10<, 8−5, 18<<D

D;

myExit@D := CloseÒFrame@fr1D;
mouseClick@_, x_, y_D := Module@8pt<,

Print@"Adding data point: ", 8x, y<D;
myData = Append@myData, 8Unique@D, x, y<D;
pp1 = myPlot@D;
UpdateWidgetValue@pp1D;

D;
myMenu = 88"File", 88"Exit", myExit<<<<;

pp1 = myPlot@D; SuperWidgetFrame@fr1,
8SuperWidgetGraphicsPanel@pp1, MouseClickFunction −> mouseClickD<,
Title −> "Simple interactive graph", Menu → myMenuD êê SuperGUIRunModal;

Adding data point: 88.9157, 9.81602<

Adding data point: 86.78779, 8.40922<

Adding data point: 86.64826, 5.52864<

Adding data point: 84.39826, 6.60049<

The Super Widget Package 29

©2006 David Bailey



This  program displays a  simple straight-line graph  with just  two points.  As you add  or  delete  points  using the  mouse, the

best-fit straight line is  re-drawn on the fly. You can achieve all this using the relatively tiny amount of code above – nothing

is hidden!

Bear  in  mind  that  the  above  example  is  still  extremely  simple  because  the  code  has  been  kept  easy  to  understand.   You

should  consult  the  examples  at  my  website  for  more  extensive  examples:

http : êê www.dbaileyconsultancy.co.uk ê swp_examples ê swp_examples.html .

The need for calibration

Ordinary Mathematica graphics is quite unlike most computer graphics in that you can create a plot or a low-level graphical

object  without any thought about the scale necessary to place it on the screen or paper.  The system chooses a scale for you

just before the image is created. You can create a plot of part of the Milky Way (or part of a molecule) using units of meters

if you wish – the system will simply take care of the necessary scaling. The SuperWidgetGraphicsPanel determines

what this scale is by calculating (this process is not visible to the user, unlike in earlier versions) a slightly modified version

of your plot with certain colours adjusted and two small spots added. The resultant image is then read back into Mathemat-

ica as an array of pixels, and used to determine the relationship between mouse position and graphics coordinates.  Because

calibration  of  a  large  image  can  be  quite  time  consuming,  by  default  it  is  only  done  once,  and  the  SWP   'assumes'  that

subsequent images will require the same calibration. It is important that your graphics satisfy this assumption, otherwise the

mouse  coordinates  returned  by  the  system  will  be  wrong.  For  example,  if  you  initially  display

Plot[Sin[x],{x,0,10}]  and  subsequently  use  UpdateWidgetValue  to  display  Plot[x^2,{x,0,10}],  it  is

vital  to  use  the  option  ReCalibrate->True  on  the call  to  UpdateWidgetValue.   If  necessary it  may be  useful  to

bound your graphics with a box (and not draw outside the box!) to ensure successive images use the same scale.

Re-sizing a graphic

When a  graphics  panel  is  re-sized,  the  system will  by default  re-scale  and  re-calibrate  the  image automatically.  However,

sometimes this  is  not  what is  required  –  for  example  it  may be  necessary  to  display  more  of  some diagram as  the  image

expands,  rather  than  merely  scale  up  the  existing  diagram.  If  the  ResizeFunction  option  is  used,  the  replacement  of  the

image  is  left  to  you.  You  must  generate  a  new  plot  with  the  new  ImageResolution  parameters  (arguments  2  and  3)  and

update  using ReCalibrate->True.  If  you fail  to  update  and  re-calibrate  the plot  inside your ResizeFunction  the

image will not fill the space and the mouse coordinates will not be properly calibrated.

Mouse modes LineÒDragÒAction, and RectangleÒDragÒAction

Sometimes,  as  above,  we  want  to  interact  with  a  graphic  by  means  of  clicks  –  single  points  –  but  sometimes  it  is  more

meaningful to think in terms of lines or rectangles. Think of a simple line drawing program. When the mouse is pressed and

dragged  we  want  a  line  or  box  to  appear  on  the  drawing  surface  and  track  the  motion  of  the  mouse.  Software  packages

normally do this by drawing the extra lines using XOR mode (which makes it fast to remove the line and re-draw it as the

mouse moves). Since none of this corresponds to normal Mathematica graphics operations, which would, in any case, be too

slow  to  track  mouse  movements,  this  XOR  line  drawing  is  performed  by  the  SuperWidgetGraphicsPanel  itself.

These options can be selected using the MouseÒMode option to the GraphicsÒRegion, and can be changed on the fly

using the SetÒMouseÒMode function. 

The  following example  is  a  little  longer  than most  in  this  user  guide,  but  it  does  illustrate  something of  the  power  that  is

possible using this super widget:

30 The Super Widget Package

©2006 David Bailey



Needs@"SuperWidgetPackage`"D

The Super Widget Package 31

©2006 David Bailey



drawing = 8<;
drawingÒhistory = 8<;
style = 1;

SetÒLineÒStyle@D := HSetÒMouseÒMode@panel1, gr0, LineÒDragÒActionD; style = 1L;
SetÒBoxÒStyle@D := HSetÒMouseÒMode@panel1, gr0, RectangleÒDragÒActionD; style = 2L;
myExit@D := CloseÒFrame@fr1D;

doÒdrawing@D := Module@8<,
Graphics@8drawing, GraphicsÒRegion@gr0, 880, 0<, 80, 10<, 810, 10<, 810, 0<<,

MouseÒMode → LineÒDragÒAction, ActionÒFunction → updateDrawingD<,
PlotRange → 880, 10<, 80, 10<<, AspectRatio → 1, ImageSize → 8600, 600<D

D;

SetAttributes@newLine, HoldFirstD;
updateDrawing@pvar_, x1_, y1_, x2_, y2_D := Module@8<,

drawingÒhistory = Append@drawingÒhistory, drawingD;
Switch@style,
1,

drawing = Append@drawing, Line@88x1, y1<, 8x2, y2<<DD,

2,

drawing = Append@drawing, Line@88x1, y1<, 8x1, y2<, 8x2, y2<, 8x2, y1<, 8x1, y1<<DD
D;
panel1 = doÒdrawing@D;
UpdateWidgetValue@panel1D;

D;

undoÒupdate@D :=

If@drawingÒhistory =!= 8<,
drawing = Last@drawingÒhistoryD;
drawingÒhistory = Drop@drawingÒhistory, −1D;
panel1 = doÒdrawing@D;
UpdateWidgetValue@panel1D;

D;

SuperGUIRunModal@
SuperWidgetFrame@fr1, 8

panel1 = doÒdrawing@D;
SuperWidgetGraphicsPanel@panel1D,
WidgetSpace@10D,
8WidgetFill@D, SuperWidgetButton@bb1, "OK", 1D, WidgetFill@D<,
WidgetSpace@10D

<, Title −> "Example drawing program",

Menu → 8
8"File", 88"Exit", myExit<<<,
8"Edit", 88"Undo", undoÒupdate<<<,
8"Objects", 88"Line", SetÒLineÒStyle<, 8"Box", SetÒBoxÒStyle<<<

<
DH∗ ,ConcealNotebooks→True ∗L

D

32 The Super Widget Package

©2006 David Bailey



1

When you run this program you are presented with a big white drawing surface. As you drag the mouse (i.e. move it with the

left button depressed) a line will appear. This line will disappear when you release the mouse button, but the updateDraw�

ing function is then called and refreshes the graphic with the extra line. By using the menu option it is possible to change to

rectangle  drawing  by  changing  the  mouse  mode  of  the  graphics  region  and  recording  the  change  of  object  in  the  style

variable.

It is important to realise that it is your Mathematica code which ultimately draws the permanent line, rectangle, or whatever.

Thus, for example, if this were an electronic circuit wiring application, it might be desirable to spot line endpoints that were

close to components and move the line slightly to close the gap. You can do what you like with the coordinate information

that you get from the mouse – you don't need to just draw a line between the end-points.

The above code also includes an (infinite!) undo menu option. This is achieved by simply storing a list of drawings created

so far and backing off to the previous one in response to the menu item. I hope I have illustrated that the SuperWidget�

GraphicsPanel opens up a whole new realm of Mathematica graphics!

Finally,  if  you  put  back  the  option  ConcealNotebooks→True  into  the  code,  the  notebooks  will  be  hidden  while  the

GUI is displayed. This  is recommended for many finished applications because prevents the user inadvertently clicking on

the notebook and obscuring the window to which he should be attending. This unfortunate  problem occurs because the Java

GUI application is executing as a separate process from Mathematica – linked together by MathLink.

Mouse mode RegionÒDragÒAction

When you start a drag operation in this mode, the contents of the whole region are dragged as a picture across the graphic.

One of the examples at my website exploits this in a simple electronic circuit drawing program. The circuit symbols (such as

transistors) are each drawn in a GraphicsÒRegion, and can be dragged about the screen.

In the following code a red arrow is placed on a graph, and a GraphicsÒRegion is placed round the arrow and set up so

it can be dragged across the screen. The test function is called at the end of the drag and re-positions the arrow, ignoring

the y value. It also computes the root of the equation f[x]==0 using FindRoot, and places a (passive) blue arrow at this

point.  This process can be repeated as desired. Notice that if you position the red arrow well away from a root,  it does not

always find the nearest root. 

Needs@"SuperWidgetPackage`"D

The Super Widget Package 33

©2006 David Bailey



Clear@fD;
results = 8<;
xÒpos = 0;

f@x_D := 8 Sin@xD;
test@_, x1_, y1_, x2_, y2_D := Module@8ans<,

xÒpos = x2;

ans = x ê. FindRoot@f@xD 
 0, 8x, xÒpos<D;
If@ans > −10 && ans  10,

results = Append@results, blueArrow@x ê. FindRoot@f@xD 
 0, 8x, xÒpos<D, 0, 0.5DDD;
p = myPlot@D;
UpdateWidgetValue@pD;

D;
redArrow@x_, y_, scale_D :=

8Red, Polygon@88x, y<, 8x − scale ê 2, y + scale<, 8x + scale ê 2, y + scale<<D,
Polygon@88x − scale ê 5, y + scale<, 8x − scale ê 5, y + 3 scale<,

8x + scale ê 5, y + 3 scale<, 8x + scale ê 5, y + scale<<D,
GraphicsÒRegion@gr0, 88x, y<, 8x − scale ê 2, y + scale<, 8x − scale ê 5, y + scale<,

8x − scale ê 5, y + 3 scale<, 8x + scale ê 5, y + 3 scale<, 8x + scale ê 5, y + scale<,
8x + scale ê 2, y + scale<<, MouseÒMode −> RegionÒDragÒAction,

ActionÒFunction → test, MouseÒCursor −> "HAND_CURSOR"D<;

blueArrow@x_, y_, scale_D :=

8Blue, Polygon@88x, y<, 8x − scale ê 2, y + scale<, 8x + scale ê 2, y + scale<<D,
Polygon@88x − scale ê 5, y + scale<, 8x − scale ê 5, y + 3 scale<,

8x + scale ê 5, y + 3 scale<, 8x + scale ê 5, y + scale<<D<

myPlot@D := Plot@f@xD, 8x, −10, 10<, PlotRange → 88−10, 10<, 8−10, 10<<,
ImageSize → 8600, 600<, AspectRatio → Automatic,

DisplayFunction → Identity, Epilog → 8redArrow@xÒpos, 8, .5D, results<D;
p = myPlot@D;
SuperWidgetGraphicsPanel@pD êê SuperGUIRunModal

Animation using icons

An 'icon' is a small 2-D graphics that is not, in general rectangular. These are created using Graphics objects, and one colour

is designated as representing the 'colour' transparent. Sprites may be added, moved and removed from a scene for very little

cost, and so offer an effective way to implement certain types of animation. Icons can only be attached to 2-D graphics.

34 The Super Widget Package

©2006 David Bailey



AddÒIcon@var,var1,x,y,optsD Adds a icon to the SuperWidgetGraphicsPanel associated with

variable var. The variable var1 holds the Graphics object,

and is used to refer to the icon in subsequent operations. The

icon is initially positioned at the point Hx,yL in Mathematica

graphics coordinates. See below for details of the options.

MoveÒIcon@var,var1,x,yD Moves the icon labelled by var1 in the SuperWidgetGraphicsPanel

associated with variable var to the specified point.

DeleteÒIcon@var,var1D Deletes the icon labelled by variable var1 from the SuperWidget-

GraphicsPanel associated with variable var. 

DeleteÒAllÒIcons@varD Removes all icons from the SuperWidgetGraphicsPanel associated 

with variable var.

ServiceÒGUI@D This should be called reasonably frequently within an animation to 

ensure that other GUI controls are processed in a timely fashion. This 

function can be useful in any situation in which a lengthy calculation 

might prevent a speedy GUI response.

Graphics animation using icons

Here is a very simple – but instructive – example of an animation using icons:

myÒicon1 = Graphics@8Green, Polygon@880, 0<, 81, 0<, 80.5, 1<<D<,
AspectRatio → Automatic, ImageSize → 20D;

myÒicon2 = Graphics@8Red, Polygon@880, 0<, 81, 0<, 80.5, 1<<D<,
AspectRatio → Automatic, ImageSize → 20D;

vvv = ParametricPlot@8Cos@5 tD, Sin@3 tD<, 8t, 0, 2 π<,
AspectRatio → Automatic, DisplayFunction → IdentityD;

SuperWidgetGraphicsPanel@vvvD êê SuperGUIRun;

AddÒIcon@vvv, myÒicon1, 0, 0D;
AddÒIcon@vvv, myÒicon2, 0, 0D;
time = 0;

While@ActiveÒWidgetQ@vvvD,
MoveÒIcon@vvv, myÒicon1, Cos@5 timeD, Sin@3 timeDD;
MoveÒIcon@vvv, myÒicon2, Cos@5 Htime + πLD, Sin@3 Htime + πLDD;
ServiceÒGUI@D;
Pause@0.1D;
time = Mod@time + 0.05, 2 πD;

D;

The Super Widget Package 35

©2006 David Bailey



One instant from the above animation

è Observe that the speed of this animation is controlled by the length of the pause and the size of the time step. Remov-

ing the pause demonstrates that the maximum update rate is very high. Animations should, wherever possible, be controlled

by a pause, rather than than simply running flat out, because this makes the display independant of subsequent increases in

processor performance.

è Note  that  the  While  loop  executes  until  the  variable  vvv  is  no-longer  associated  with  a  widget  –  i.e.  until  the

window  is  closed.  The  calls  to  the  function  ServiceÒGUI  are  desirable  whenever  a  lengthy  calculation  (not  just  an

animation)  is  performed  while  a  super  widget  is  on  display  –  they  ensure  that  actions  associated  with  other  widgets  are

processed in a timely manner.

è The size of the icons is controlled by the ImageSize option to the Graphics structure – omitting this will result

in absurdly large icons. The automatic aspect ratio ensures that the shape of the icons are not squashed.

è Although  the  above  example  does  not  require  this,  it  would  be  possible  to  update  the  main  graphic  within  the

animation  loop  by  calling  UpdateWidgetValue  on  the  variable  vvv.  This  would  be  a  much  slower  operation  than

36 The Super Widget Package

©2006 David Bailey



UpdateWidgetValue vvv

moving the icons, and the animation would need to be designed with this in mind.

By  default,  icons  created  by  AddÒIcon  render  white  parts  of  the  icon  as  transparent.  Since  this  is  the  default  background

colour, this is often a good choice, however the option TransparentÒColor can be used to select another colour to play

this role. You need this option if part of the icon is to display as white. Also by default, icons are centred on a point in the

middle of their rectangle. This point is known as the 'hot spot' because it is the point to which the icon refers. Sometimes it is

more  convenient  to  select  a  different  hot  spot  –  e.g.  in  the  case  of  an  icon  shaped  like  an  arrow –  using the  HotÒSpot

option.  This  defaults to {0.5,0.5}  and represents the position of the hot spot as a fraction of the total  icon dimensions.

Thus {0,0} would represent bottom left, {1,1}, top right, etc.

Dynamic tool tips

A tool-tip is normally used to provide fixed some help information to the user. Many of the super widgets take a ToolÒTip

option  for exactly this purpose.  However, within ia graphics panel,  it  is  usually more convenient  to use a  tool-tip  that is  a

function of the (x,y) position. This can be particularly useful for displaying information about a complex function. The idea

is  that  each  time  the  mouse  moves  to  a  new  location  on  the  graphics  surface,  a  function  of  three  arguments  is  called  to

recompute the tool-tip string. For example:

ToExpression@"8plot<"D;
plot = DensityPlot@Re@Sin@x + I yDD, 8x, −5, 5<, 8y, −5, 5<, ColorFunction → Hue,

DisplayFunction → Identity, ImageSize → 8600, 480<, PlotPoints → 40,

Mesh → False, Epilog → 8Table@Line@88−5, k<, 85, k<<D, 8k, −4, 4<D,
Table@Line@88k, −5<, 8k, 5<<D, 8k, −4, 4<D<D;

HoldFirst@fD;
f@_, x_, y_D := Module@8<,

" f@" > ToString@SetAccuracy@x + I y, 4DD >

"D=" > ToString@SetAccuracy@Sin@x + I yD, 4DD
D;

SuperWidgetGraphicsPanel@plot, DynamicÒToolÒTip → fD êê SuperGUIRunModal

The Super Widget Package 37

©2006 David Bailey



� Graphics �

Although  the  above  image  does  not  actually  show  the  tool-tip  (because  I  had  to  us  the  mouse  to  take  the  picture!),  an

animated GIF that shows the tool-tips can be found on the SWP website here.

If the mouse cursor enters a graphics region with its own tool-tip, this takes precedence over the dynamic tool-tip.

Notice that the mesh is not useful if, as here, enough points are selected to make a smooth image, therefore the above code

disables it and draws a grid instead.

38 The Super Widget Package

©2006 David Bailey



Displaying other objects using SuperWidgetGraphicsPanel

Although SuperWidgetGraphicsPanel is normally used to display graphics, it can be used to display any object. For example:

xxx = PadeApproximant@Exp@xD, 8x, 0, 82, 3<<D;
SuperWidgetGraphicsPanel@xxxD êê SuperGUIRunModal

Graphics regions can be introduced by using the Annotation mechanism introduced at 6.0. For example:

xxx = a + Annotation@b, GraphicsÒRegion@ggg, Null, ToolÒTip −> "This is the variable b"DD

This object would display as a+b, and a tool tip would appear when 'b' was moused over. All the features of graphics regions

are available using this mechanism. 

Tip!  This  is  just  one  of  the  many  interesting  possibilities  opened  up  by  the  introduction  of  Annotation  in

Mathematica 6.0 because it allows data to be associated with an expression invisibly.

LiveGraphics3D

Introduction to LiveGraphics3D

LiveGraphics3D is  a  Java  applet  written by Martin  Kraus  which has  been used  extensively by Mathematica  programmers

interested in displaying and manipulating 3-dimentional objects.  An 'applet'  is  a piece  of Java code  that is  designed to run

inside a web page. It is called from HTML with various parameters that control it. This was the original idea of LiveGraphic-

s3D, which has been used to create many interactive mathematical displays, for example here. These displays can be rotated

by the mouse. In the later versions it is also possible to add points that can be dragged using the mouse and which cause the

rest of the object to reconfigure accordingly. The LiveGraphics3D applet can be downloaded here together with its documen-

tation, and you should ensure you have version 1.83 or later.

A good place to put the file Live.jar to ensure it is found by the system is inside the Java subdirectory of the SuperWidget-

Package  –  which  will  be  found  at

$InstallationDirectory<>"/addons/Applications/superwidgetpackage/Java".  This  is  where  the

SWP will put it if you rely on SWP to download the applet from the internet the first time you use it.

More recently, LiveGraphics3D has acquired a J/Link interface so that a Mathematica program can create a window contain-

ing LiveGraphics3D and control it directly – without using a browser. Using the SWP, it is possible to treat a LiveGraphic-

s3D object as a widget and control it with other widgets on the same window.

The Super Widget Package 39

©2006 David Bailey



This user guide does not attempt to describe how to use the LiveGraphics3D applet, only how to interface it with the SWP.

SuperWidgetLiveGraphics3D

SuperWidgetLiveGraphics3D@
v,optsD

Displays  Graphics3D object stored in v using LiveGraphics3D

LiveGraphics3D super widget

Background Background colour for the applet – defaults to white.

ChangeFunction One-argument function to be called when a user mouse action might 

have changed one of the independent parameters or rotated the image.

FullChangeFunction One-argument function to be called when a user mouse action might 

have changed one of the independent parameters or rotated the 

image. The function is called repeatedly during dragging operations – 

see text for details.

PixelÒWidth Width in pixels for the applet.

PixelÒHeight Height in pixelts for the applet.

IndependentÒVariables Specifies a list of independant variable specifications of the form var-

>real-value. See the LiveGraphics3D documentation for full details.

DependentÒVariables Specifies a list of dependant variable specifications of the form var-

>real-expression. See the LiveGraphics3D documentation for full 

details.

MouseÒDragable Determines whether the mouse can rotate the image. This defaults to 

True, but can usefully be set false in cases where the mouse is used to 

control the variables..

Options for SuperWidgetLiveGraphics3D

First you must prepare  some input suitable for the LiveGraphics3D applet.  A simple 3-D plot  will do,  but  there are  issues

regarding overlapping polygons  – so read the LiveGraphics3D documentation for full details. This data is then used in the

control variable:

Needs@"SuperWidgetPackage`"D

v = Graphics3D@Plot3D@Sin@x yD, 8x, −2, 2<, 8y, −2, 2<, DisplayFunction → IdentityD,
ViewPoint → 81, 1, 1<, ViewVertical → 80, 0, 1<D;

8SuperWidgetLiveGraphics3D@vD, ¶10, 8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10< êê
SuperGUIRunModal

1

Note that the image can be rotated with the mouse, or even set spinning.

The LiveGraphics3D applet is capable of working interactively. The Graphics3D object can contain variables which can be

controlled by dragging the mouse or used to produce animation. It is possible to interact with this process using the Change�

Function  or  FullChangeFunction  options.  The  supplied  function  will  be  called  (with  the  associated  variable  as

40 The Super Widget Package

©2006 David Bailey



Function FullChangeFunction

argument) if a user mouse action might have changed an independent  variable  or  rotated  the image. The function that you

supply must tolerate the fact that it will sometimes get called when no change has taken place. This is due to the rather loose

connection  between  the  SWP  and  the  applet.  Passing  the  associated  variable  to  the  LiveGraphics3DVariables

function will  return  a  complete  set  of  variable  values  as  a  set  or  rules.  It  is  particularly  important  that  these  variables  are

never given actual values within your Mathematica code.

Using the  FullChangeFunction  it  is  possible  to  get  continuous  feedback  while a  drag  operation  is  being  performed.

While this can be useful, it  may overload  the processor  and cause the dragging operation  to become erratic  in some situa-

tions. 

By altering the graphical  data  stored  in the associated  variable  and calling UpdateWidgetValue  it  is  possible  to  com-

pletely change the image on display. 

Although  the  above  may  sound  a  little  confusing,  the  concept  of  parameterized  graphics  using  LiveGraphics3D  is  well

described at Martin Kraus' site – so a simple example of its use in the super widget should suffice:

Circle3D@8px_, py_, pz_<, r_D := With@8eps = 0.1<,
Line@Table@8px + r Cos@tD, py + r Sin@tD, pz<, 8t, 0, 2.0 π + eps, eps<DDD;

Text3D@x_, pos_D := Text@StyleForm@x, FontSize → 35, FontWeight −> "Bold"D, pos ∗ 1.095D;
xxx = 1 ê Sqrt@2.0D;
yyy = 1 ê Sqrt@2.0D;
gg = Graphics3D@8

Thickness@0.003D,
Text3D@"A", 8−1, 0, 0<D, Text3D@"B", 81, 0, 0<D, Text3D@"C", 8xx, yy, 0<D,
Circle3D@80, 0, 0<, 1D, Line@88−1, 0, 0<, 81, 0, 0<<D,
PointSize@0.015D, Point@8xx, yy, zz<D,
Line@88−1, 0, 0<, 8xx, yy, 0<, 81, 0, 0<<D

<, ViewPoint → 80, 0, 4<, ViewVertical → 80, 1, 0<, Boxed → FalseD;

indepvar = 8xx → xxx, yy → yyy<;
depvar = 8zz → 0, theta −> ArcTan@xx, yyD, xx → Cos@thetaD, yy → Sin@thetaD<;

The Super Widget Package 41

©2006 David Bailey



Clear@fD;
f@_D := Module@8s<,

s = LiveGraphics3DVariables@ggD;
8xxx, yyy< = 8xx, yy< ê. s;

AC = Norm@8xxx, yyy< − 8−1, 0<D;
BC = Norm@8xxx, yyy< − 81, 0<D;
res = Sqrt@AC^2 + BC^2D;
UpdateWidgetValue@ACD;
UpdateWidgetValue@BCD;
UpdateWidgetValue@resD;

D;

SuperWidgetFrame@Null, 8
8¶10,
8
8"AC", Í, "=", SuperWidgetRealBox@ACD<,
8"BC", Í, "=", SuperWidgetRealBox@BCD<,
8ImageÒExpression@HoldForm@Sqrt@AC^2 + BC^2DDD,
Í, "=", SuperWidgetRealBox@resD<

<,
SuperWidgetLiveGraphics3D@gg, PixelÒWidth → 600, PixelÒHeight → 450,

MouseÒDragable → False,

Background → RGBColor@0.8, 0.8, 1D,
IndependentÒVariables → indepvar,

DependentÒVariables → depvar,

FullChangeFunction → fD<, ¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10<, Title −> "Euclidean Geometry"

D êê SuperGUIRun;

This very simple example illustrates a well known theorem in geometry that a triangle inscribed in a circle so that one side is

a diameter will be right angled. If you move the mouse over point C, you will see it respond – meaning it is draggable. Try

dragging the point  round  the circle  and watch the  data  in  the rest  of  the GUI  adjust  accordingly.  Note  that  the  dependent

variables list  contains rules that constrain the point C to lie on the circle.  Because all the coordinates  in this example have

z=0, and because it is viewed from directly above (positive z) the diagram is essentially 2-dimensional. For this reason, the

MouseÒDragable->False option is used to prevent the 'paper' being rotated by the mouse.

JavaView

About JavaView

JavaView  is  another  freely  available  Java  program  that  displays  graphics  in  a  Java  window and  lets  you  manipulate  the

image with the mouse. It was written by Konrad Polthier  and is available  here.  In many ways it  is similar to LiveGraphic-

s3D, but the graphics are generally considered to be superior,  and it is more extensively programmable via J/Link (but you

need  to  know a  little  Java).  JavaView can  be  used  in  many environments  (not  just  Mathematica)  but  it  comes  with some

interface code for Mathematica, which you should install. You can download JavaView for free, but you have to register the

software before it can be used sensibly. Note that the registration step is also free.

Tip!  When  you  register  JavaView,  you  will  be  sent  a  file  called  jv-lic.lic,  to  be  placed  in  the  JavaView\rsrc

42 The Super Widget Package

©2006 David Bailey



directory. When installed on a machine with Mathematica, there are two such directories – one in the Mathematica AddOns

tree, and one in the main software directory tree (typically c:\Program Files under Windows). It is important that a copy of

this license file is placed in both the JavaView\rsrc directories.

In order to control some of the more advanced features of JavaView – such as the ability to map textures on to 3-D objects –

it is necessary to use J/Link, so some of the examples in this section assume a knowledge of J/Link and Java, although this is

not necessary in order to use JavaView as a simple viewer.

SuperWidgetJavaView

SuperWidgetJavaView@v,optsD Displays  Mathematica graphics (usually 3-D) stored in v. The 

graphics can be rotated by dragging with the mouse.

JavaView super widget

PixelÒWidth Width in pixels for the applet.

PixelÒHeight Height in pixelts for the applet.

PickÒCameraÒListener Specifies a function to be called when a camera pick event occurs 

(see below).

DragÒCameraÒListener Specifies a function to be called when a camera drag event occurs 

(see below).

Options for SuperWidgetJavaView

Using the SuperWidgetJavaView, it is possible to embed a JavaView window (or windows!) in a SWP GUI:

Here is a simple example:

The Super Widget Package 43

©2006 David Bailey



zzz =

ParametricPlot3DB:J 2 Cos@vD2 Cos@2 uD + Cos@uD Sin@2 vDN í J2 − 2 Sin@3 uD Sin@2 vDN,

J 2 Cos@vD2 Sin@2 uD + Cos@uD Sin@2 vDN í J2 − 2 Sin@3 uD Sin@2 vDN,
3 Cos@vD2

2 − 2 Sin@3 uD Sin@2 vD
>, 8u, −π ê 2, π ê 2<,

8v, 0, π<, DisplayFunction → Identity, Axes → False, Boxed → FalseF;
zzz@@1DD = Prepend@zzz@@1DD, EdgeForm@DD;
8SuperWidgetJavaView@zzzD,

¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10< êê SuperGUIRun;

Tip!  Normally, ParametricPlot3D produces an image in which the edges of each triangle are drawn in black.

44 The Super Widget Package

©2006 David Bailey



To suppress these, the above code splices in the EdgeForm[] directive ahead of the rest of the graphics. Of course, this trick

can be used generally, not just in the SWP/JavaView context.

JavaView objects  can be manipulated using J/Link in many ways. Typically these operations  use the geometry and display

objects belonging to the JavaView widget.

Tip!  Under Mathematica 6.0 the above example issues a warning about a package. This does not seem relevant to

the use of JavaView inside the SWP, and will doubtless be fixed in a subsequent version of the software.

Camera listeners

JavaView supplies several 'listener classes'. The most important one is the camera listener, which can be hooked up directly

using options to SuperWidgetJavaView. The function should accept two arguments – the event class, and a second argument

which seems to always contain the string "hello". Perhaps a future version of JavaView will remove this argument, so it may

be best to code the function to take an arbitrary number of arguments.

For  full  details  of  camera  events,  consult  the  JavaView documentation,  but  pick  events  happen  at  the  start  of  a  drag,  fol-

lowed by a sequence of drag events.

To  avoid  a  buildup  of  unwanted Java  objects,  the first  argument (the  event)  should be  removed  using RemoveJavaObject

when no longer required.

Manipulating JavaView objects

GetÒJavaViewÒObjects@vD DReturns a list of Java objects belonging to the JavaView widget 

associated with variable v. Currently this list contains the geometry 

object and the display object. Further objects may be appended to 

this list in future versions.

GetÒJavaViewÒObjects function

A JavaView display is controlled by a number of Java objects.  The traditional  way to use JavaView is to manipulate these

objects  directly  using  J/Link.  Although  this  is  not  usually  necessary  in  simple  examples,  it  is  sometimes  useful  to  obtain

these objects – as in the texture mapping example that follows.

Using texture mapping

This  example  exploits  some  of  the  more  advanced  features  of  JavaView  to  perform  texture  mapping  on  a  3-D  structure.

Consult the JavaView manual for more details of the J/Link calls that are used here.

Tip!  Note also, that because the pathname is consumed by Java code and not by Mathematica, the correct separa-

tor characters must be used to form the path to the texture file. This is obtained from $PathnameSeparator.

The Super Widget Package 45

©2006 David Bailey



 JavaView`JLink`;

 Graphics`SurfaceOfRevolution`;

texturise@D := Module@8geom, tex<,
geom = GetÒJavaViewÒObjects@zzzD;
tex = TextureImage@SuperWidgetPackagePath@D >

$PathnameSeparator > "ExampleFiles" > $PathnameSeparator > "wood.gif"D;
geom@@1DD@setTexture@texD;
geom@@1DD@makeVertexTextureFromBndBox@0, 1D;
geom@@1DD@showVertexTexture@TrueD;
geom@@1DD@update@geom@@1DDD

D;

zzz = SurfaceOfRevolution@81.2 + Sin@xD, x<,
8x, 0, 2 Pi<, DisplayFunction → Identity, Axes → False, Boxed → FalseD;

SuperGUIRunModal@8SuperWidgetJavaView@zzzD,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10<, OnÒDisplay → texturiseD

46 The Super Widget Package

©2006 David Bailey



Observe that the surface of revolution is displayed in the normal way, and then the OnÒDisplay option to SuperGUIRun�

Modal executes a function that modifies the image to apply a wood texture.

The Super Widget Package 47

©2006 David Bailey



Frames, Dialog boxes, and menus

Introduction to Frames and Dialogs

SuperWidgetFrame@
v,contents,optsD

Displays a frame with the given contents. The contents should be a 

list (typically nested) of super widgets, widgets, and widget layout 

operations. SuperGUIRun and SuperGUIRunModal each supply a 

frame if none is supplied, however by providing one explicitly, the 

Menu, Title, ToolÒBar, and CloseFunction options can be supplied. 

The associated variable, v   may also be used in the CloseÒFrame 

function.

SuperWidgetDialog@
v,contents,optsD

Displays a dialog box with the given contents. The contents should be 

a list (typically nested) of super widgets, widgets, and widget layout 

operations. Dialog boxes cannot accept a menu and do not have 

maximise/minimise buttons in their caption bars.

ReplaceÒMenu@v,menuD Replaces the menu if a SuperWidgetFrame. This can be used

to create dynamic menus – analogous to the Mathematica

Windows menu which changes as notebooks are opened or closed.

Frame and Dialog super widgets

SuperWidgetFrame  or  SuperWidgetDialog  supply  the  window that  surrounds  the  various  widgets  that  it  contains.  A

SuperWidgetFrame  is supplied implicitly, where required,  but by providing it  explicitly you can customise it  using its

various options:

48 The Super Widget Package

©2006 David Bailey



Menu Option for SuperWidgetFrame only – specifies a menu that appears 

immediately beneath the caption bar. See below for details regarding 

the construction of a menu.

ToolÒBar Option for SuperWidgetFrame only – specifies a tool bar that appears 

immediately beneath the menu (if present). See below for details 

regarding the construction of a tool bar.

Title Specifies a title (as a string) for the window. The title will appear in 

the caption bar.

CloseFunction Specifies a function which is called with the associated variable v 

when the window closes.

WindowÒPosition Specifies the position of the top left hand corner of the frame or 

dialog with respect to the top left of the screen.

BareÒWindow Option for SuperWidgetFrame only – specifies that the window 

appear without title or borders. This is typically used for very tempo-

rary information windows, and care should be taken to ensure that 

such a windo is removed when not required, because the user cannot 

do this explicitly.

BackgroundÒWallpaper Specifies an image file to use as a background pattern to the frame.

PaletteÒStyle Used together with Desktop opton to indicate

that the new frame should appear as a floating palette.

Options for Frame and Dialog super widgets

Menus

Menus are typically attached to the main window of an application, and are one of the main ways of presenting the functional-

ity of the program. A menu consists of a list of menu-items, which have one of three possible structures:

{Name,action-function}

{Name,action-function,accelerator}

{Name,sub-menu}

Menus can also contain MenuÒSeparator items to split a menu into sections separated by a line.

For example, here is a menu consisting of just one item – the "File" item. This item is defined , not by a function, but by a

sub-menu containing three menu items with the third separated from the other two. Menu functions take no arguments.

Needs@"SuperWidgetPackage`"D

88"File",
88"Open", openÒfunc<, 8"Save", saveÒfunc<, MenuÒSeparator, 8"Exit", exitÒfunc<<<<

Here is a complete example:

The Super Widget Package 49

©2006 David Bailey



openÒfunc@D := Print@"Open"D;
saveÒfunc@D := Print@"Save"D;
exitÒfunc@D := Print@"Exit"D;
SuperWidgetFrame@fr, 8

¶10,

8¶10, SuperWidgetLabel@ll1, "Select the menu items in turn"D, ¶10<,
¶10,

8¶0, SuperWidgetButton@bb1, "Ok", 1D, ¶0<,
¶10

<,
Title −> "Demo", Menu −> 88"File",

88"Open", openÒfunc<, 8"Save", saveÒfunc<, MenuÒSeparator, 8"Exit", exitÒfunc<<<<
D êê SuperGUIRunModal

Save

1

Notice  how the "File"  menu contains  a sub-menu rather  than a  function name. Menus can be  nested to  an arbitrary  depth.

Because the function names are also used to refer to menus in certain situations (analogous to the first argument of a super

widget), the functions must be specified as actual function names – not as pure functions. It is also possible to create menus

with images – which is particularly convenient for mathematical expressions, which are usually unprintable as Java strings:

Clear@xD;
SuperWidgetFrame@fr, 8

¶10,

8¶10, "This demos pretty menus", ¶10<,
¶10

<,
Title −> "Demo",

Menu −> 88"Function", 88ImageÒExpression@Sqrt@x + 1DD, fn1<, MenuÒSeparator,
8ImageÒExpression@1 ê H1 + x ê H1 + x ê H1 + xLLLD, fn2<,
MenuÒSeparator, 8ImageÒExpression@1 + x + x^2D, fn3<<<<

D êê SuperGUIRunModal

50 The Super Widget Package

©2006 David Bailey



To understand the real power of menus, it is worth looking carefully at a specific example – say Mathematica's Cell>Con-

vert  to>InputForm (this  refers  to  version 5.2,  menu details  sometimes vary between versions).  Although this menu can be

accessed  using  the  mouse,  many  people  find  it  more  convenient  to  use  the  keyboard.  This  particular  menu  item  can  be

accessed using the keyboard in two different ways. If you open the menu, you will see that it can be accessed using Shift-

Ctrl-I  –  this  is  known as  a  keyboard  accelerator.  Alternatively,  on  some  platforms  (including  Windows),  it  is  possible  to

open menus progressively using menu mnemonics. In this case, if you hold the Alt key down, you will see that the 'C' of the

cell menu is underlined. Keeping the Alt key down and  pressing 'C' will open the cell menu, where you will see that each

option also has an underlined letter  - 'C' takes us to the sub-menu required,  etc.  The sequence Alt-CCI is known as a key-

board  mnemonic. Mnemonics are  very heavily used on platforms that support  them, and are  very easy to specify using the

SWP

The accelerator, if present, consists of a (case insensitive) string that defines a key with modifiers that will operate the menu

function directly. Here are a few examples of accelerators:

"Ctrl-A"

"Shift-Ctrl-Z"

"Alt-Q"

"Meta-Q"

Note that the Meta key does not apply to Windows platforms.

To specify a mnemonic, simply include an '&' character in the menu name (e.g. "&File")  – the '&' will be removed, and on

suitable  platforms,  the  next  character  ('F'  in  this  case)  will  be  underlined  as  part  of  the  mnemonic.  No  special  action  is

required to support platforms such as the Mac which do not support mnemonics – the mnemonic will simply be ignored. 

The Super Widget Package 51

©2006 David Bailey



required to support platforms such as the Mac which do not support mnemonics – the mnemonic will simply be ignored. 

Tip!  The entire menu bar for Mathematica is defined in the file MENUSETUP.TR using the same '&' notation to

specify mnemonics as is used here.

There is no problem if your keyboard accelerators/mnemonics clash with those of Mathematica.  If your GUI application is

in focus, its menu is in effect – not that of Mathematica.

Tip!  In  complex  GUI  programs,  not  all  menu  options  make  sense  in  all  situations.  For  example,  many  menu

options may not make sense until the user has actually opened  a file – say by using the 'file/open' menu item. Menu items

can ge disabled (which gives them a washed out appearance) by passing the name of their associated function to SetÒEn�

abledÒStatus.

Toolbars

A toolbar is a strip of widgets positioned at the top of a window underneath the menu (if there is one). Typically it contains

small  image  buttons  and  combo  boxes.  The  ToolÒBar  option  can  be  used  on  SuperWidgetFrame,  and  you  simply

specify a list of super widgets to place on the bar. 

Needs@"SuperWidgetPackage`"D

newÒfunc@___D := Print@"New"D;
openÒfunc@___D := Print@"Open"D;
saveÒfunc@___D := Print@"Save"D;
exitÒfunc@___D := HPrint@"Exit"D; CloseÒFrame@frDL;

SuperWidgetFrame@fr, 8
¶10,

8¶10, "Select the menu items in turn", ¶10<,
¶10,

8¶0, SuperWidgetButton@bb1, "Ok", 1D, ¶0<,
¶10

<,
ToolÒBar → 8

SuperWidgetButton@tb1,
ImageÒFile@SuperWidgetPackagePath@D > "êExampleFilesênew.gif"D, newÒfuncD,

SuperWidgetButton@tb2, ImageÒFile@SuperWidgetPackagePath@D >

"êExampleFilesêopen.gif"D, openÒfuncD,
MenuÒSeparator,
SuperWidgetButton@tb3,
ImageÒFile@SuperWidgetPackagePath@D > "êExampleFilesêsave.gif"D, saveÒfuncD

<,
Title −> "Demo",

Menu −> 88"File", 88"New", newÒfunc<, 8"Open", openÒfunc<, 8"Save", saveÒfunc<,
MenuÒSeparator, 8"Exit", exitÒfunc<<<<

D êê SuperGUIRunModal

52 The Super Widget Package

©2006 David Bailey



Leaving a shadow
We  have  already  seen  a  number  of  programs  that  use  CloseÒFrame  to  destroy  a  window  explicitly.  The  funstion

CloseÒFrame can take the option LeaveÒShadow->True. 

Using this  option,  you destroy  the  window, but  leave  a  non-functional copy  of  the  window visible  on the  screen  until  the

SWP puts up the next window. This has a number of practical uses:

è  If you want to replace  one window with another of the same size, but containing some different information, closing the

first using this option will create the illusion that you have somehow updated the window, not replaced it – i.e. there will be

no glitch.

è  Many serious  programs  must do  considerable  work before  they can  display their  first  window. By greating a  window –

possibly  containing  some  relevant  graphics  –  and  then  closing  it  with the  LeaveÒShadow option,  you  will  create  a  splash

screen that will keep your users focussed until your real GUI fires up. This reproduces the behaviour of many GUI programs

– including Mathematica itself.

è If you provide a button that initiates a task taking more than a second or so (remember that your user's may not all be using

fast  processors),  you can  use a  shadowed window to  tell  them to  wait  for  a  moment. Longer waits may be  better  handled

using a window with a progress bar, but this is inevitably more complex to program.

For example, the following code will display a simple splash screen while a Pause simulates a complex startup procedure:

SuperWidgetFrame@splashÒscreen, 8ImageÒFile@
SuperWidgetPackagePath@D > "êExampleFilesêconsultancy.gif"D<D êê SuperGUIRun;

CloseÒFrame@splashÒscreen, LeaveÒShadow −> TrueD;
Pause@5D;
ShowMessageBox@"The rest of the program", "", 8"OK"<D

It is also possible to fade the shadow by mixing it with another colour by adding the option FadeÒColour->Blue (say,

use  any  colour  specification  here).  This  can  sometimes  be  helpful  to  remind  users  that  the  controls  on  the  shadow  are

inactive!

SuperWidgetTextEditor

SuperWidgetTextEditor@v,optsD Implements a text editor,

where v contains the string of text.The text may contain newlines,

and will flow across multiple lines as required

Hso it could consist of several paragraphsL.The string must

only contain normal Java characters.The ChangeFunction

option can be used to monitor the changes made by the user.

Text editor super widget

The Super Widget Package 53

©2006 David Bailey



ChangeFunction Function to call when the user alters the text.

Font Font specification in the form 8Name,face,size<

ToolÒTip String to use as the tool tip.

PanelÒMargins Pixel margin to surround editing area – default 812,12,12,12<

PixelÒWidth Pixel width for the widget.

PixelÒHeight Pixel height for the widget.

Editable Specifies whether the text can be altered Hdefault TrueL.

This creates a simple text editing panel. The control variable is set to the initial value of the text string, and is updated as the

user makes changes. The text string can contain newlines, and will flow across multiple lines, with scroll  bars as required.

Thus large quantities of text can be handled. The option ChangeFunction can be used to specify a 1-argument function

to be invoked each time a change is made by the user.  The options PixelÒWidth  and PixelÒHeight  can be used to

override the default size of this widget. Also, it is possible to change the value of the control variable, and call UpdateWid�

getValue  to  change  the  contents  programmatically.  Here  we read  a  file  from the  ExampleFiles  directory  and  manually

replace most of the text with the name of a vegetable: 

Needs@"SuperWidgetPackage`"D

Module@8str, v<,
str = OpenRead@"SuperWidgetPackageêExampleFilesêTextToEdit"D;
v = Read@str, Record, RecordSeparators → 8<D;
Close@strD;
SuperWidgetTextEditor@v, PixelÒWidth → 300, PixelÒHeight → 200D êê SuperGUIRunModal;

v

D
The SWP is supplied as a ZIP file containing all the files required in their

appropriate directories.. It is vital that this directory structure is

preserved. Copy the file to the Mathematica directory, e.g. C:\program

files\wolfram research\mathematica\5.1 Hthe exact directory depends on the

version of Mathematica installedL. Unzip the file SuperWidgetPackage.ZIP

using a tool that preserves the directory structure and handles

long names correctly, e.g. PKZIPHRL Version 2.50, or WinZipHRL.

Finally, start Mathematica, click on the 'Help' menu, and select 'Rebuild Help

index'. This will integrate the SWP documentation with the rest of Mathematica.

You will find the SWP help in the 'Addons' section of the help browser.

Note that by setting Editable->False you can display a portion of text (with scrolling if necessary) but prevent the user

from modifying it.

Exploiting HTML

SuperWidgetHTMLPanel@v,optsD Displays HTML string stored in v. Can respond to

hyperlinks by loading other pages He.g. from the internetL,

or be executing Mathematica code.

HTML super widget

This creates an HTML panel. The first argument is the associated variable, and should be set to a text string containing the

HTML.  The  result  is  laid  out  in  the  window, and  if  the  HTML  contains  URL links,  these  are  clickable  and  will  start  the

Ò Ò Ò

54 The Super Widget Package

©2006 David Bailey



HTML.  The  result  is  laid  out  in  the  window, and  if  the  HTML  contains  URL links,  these  are  clickable  and  will  start  the

browser. The options PixelÒWidth and PixelÒHeight can be used to set the size of the panel. The option PixelÒ�

Margins  can be  set  to  an  array of  four  integers  (left,  top,bottom,right)  representing  the margin size  in  pixel.  A 15  pixel

margin is  used by default.  A single integer  can be  used to set  all  four  margins to  the same value.  The  Background  option

may also be specified to set an overall background colour for the panel. Each of the examples in the examples section has a

Help/About box constructed with this super widget.

This super widget also recognises a special form of 'URL', beginning mathcommand:// – for example: mathcommand://Print-

[42] – which can be used to execute a command when the link is pressed. Since the syntax of HTML would preclude such a

command containing a double quote symbol, the sterling symbol '£' can be used instead of a double quote.

Although the text cannot be edited by the user, it can be changed by altering the value of the associated variable and using

UpdateWidgetValue.  This  could be particularly useful in 'Wizard'  - like applications  where you want to display some

explanatory text which changes as things progress.

Here is a small illustration of what is possible. Obviously, some knowledge of HTML (but none of cooking!) is necessary to

interpret this example:

Needs@"SuperWidgetPackage`"D

page1 = "html>body>" >

"h1 align=\"center\">Baking a jalopeno cake: part 1.êh1>" >

"p>Start with a TESCO sponge cake mix, and prepare it according to

instructions until it is ready to be put in the oven.êp>p>Add
1 ounce of chopped jalopenos Hor more, if desiredL.êp> p>a

href=\"mathcommand:êêReplacepage@D\">Next stepêa>êp>" >

"êp>êbody>êhtml>";
page2 = "html>body>" >

"h1 align=\"center\">Baking a jalopeno cake: part 2.êh1>" >

"p>After thorough mixing, bake your cake in the oven according

to TESCO instructions. êp>p>While your cake is cooling, you

may wish to purchase some indigestion tablets just in case

you find the result a little tough on the stomach!êp> p>a

href=\"mathcommand:êêReplacepage@D\">Previous stepêa>êp>" >

"êp>êbody>êhtml>";
thisÒpage = page1;

Replacepage@D := HIf@thisÒpage 
 page1, thisÒpage = page2, thisÒpage = page1D;
UpdateWidgetValue@thisÒpageDL;

SuperWidgetHTMLPanel@thisÒpage, Background → RGBColor@0.8, 0.8, 1DD êê SuperGUIRunModal

Null

è  Note:  as  you  can  see  above,  HTML  text  often  contains  quoted  text.  As  is  usual  with  Mathematica,  to  obtain  a  quote

character  inside  a  string  you  must  preceded  it  with  a  backslash  character.  Some  care  is  required  to  do  this  correctly  –

particularly  in  larger  examples.  You  may wish to  either  read  the HTML text  from a  file,  and  display  it  with FullForm,

which will show all  the escape characters  correctly.  The  result  could then be pasted  into your program. Alternatively, you

could read a file (or even something off the Internet, using GetURL) as your program executes.

è Observe that you could produce your entire application using links within HTML to drive it.

HTML  strings  can  also  be  inserted  in  many other  places  where  super  widgets  require  text.  This  can  be  used  to  produce

extremely fancy buttons, combo boxes, tool tips, etc. See the section on using HTML strings inside super widgets.

The Super Widget Package 55

©2006 David Bailey



SuperWidgetTable

SuperWidgetTable@v,optsD Displays a table represented by the structure stored in the associated 

variable v, which should contain a rectangular array of reals.

Table super widget

TableÒHeadings Can be set to an array of strings. The array should contain as many 

elements as there are columns in the array.

ChangeFunction Function that will be called each time the data is changed by the user. 

Takes one argument – the associated variable v.

ColumnsÒEditable A list of boolean values or All or None - indicating which columns 

can be edited.

ToolÒTip Specifies a tooltip string.

PixelÒWidth Width in pixels, default 300. (scrolling will be used if the table size is 

not set large enough).

PixelÒHeight Height in pixels, default 200 (scrolling will be used if the table size is 

not set large enough).

DigitsÒAfterÒPoint Defaults to Automatic, can be set to a list (one per column) of 

integers specifying the number of digits after the decimal point used 

to display Real data.

Options for Table super widget

This creates a grid of data values, which may optionally be edited. The control variable holds the array of data, which can be

real, integer, string, or boolean (True/False) and the columns can have title information. Here is a simple example:

Needs@"SuperWidgetPackage`"D

z = IdentityMatrix@5D êê N;

zinv = Inverse@zD êê N;

tfn@_D := Module@8<,
zinv = Inverse@zD êê N;

UpdateWidgetValue@zinvD;
D;

hd = Table@"Col " > ToString@iD, 8i, 1, 5<D;
8

8¶0, "Input table", ¶0<, ¶10, SuperWidgetTable@z,
TableÒHeadings → hd, ColumnsÒEditable → All, ChangeFunction → tfnD,

¶10,

SuperWidgetTable@zinv, TableÒHeadings → hd, ColumnsÒEditable → NoneD,
¶10, 8¶0, SuperWidgetButton@Null, "OK", 1, ToolÒTip → "Press to finish"D, ¶0<< êê

SuperGUIRun

� GUIObject �

Only the top  array is  editable,  the  bottom one  displays the  inverse of  the  matrix and  is  updated  on the  fly. The  following

options may be used:

TableÒHeadings  –  Either  Null,  or  a  list  of  heading  strings  of  the  correct  length  for  the  number  of  columns  of  the

56 The Super Widget Package

©2006 David Bailey



TableÒHeadings Null

matrix.

ChangeFunction  –  Function  to  be  called  when the  data  is  changed  by  the  user.  The  updated  control  variable  will  be

passed, and as usual, it may be useful to declare the function to have attribute HoldFirst.

ColumnsÒEditable – Either a boolean array with an entry for each column to indicate if it is editable, or All or None.

ToolÒTip – String to be used as a tooltip.

PixelÒWidth,  PixelÒHeight  –  Specify the size  of  the control.  If  the array is  too  large  for  the specified  size,  scroll

bars will be used.

Note  carefully  that  data  within  each  column should  be  either  all  integer  or  all  Real  –  not  mixed,  fractional,  or  complex.

Typically you might want to use //N or the data as it is being set up.

Individual columns can be set up to display Real numbers in fixed point format (very useful for currency values) by using

the DigitsÒAfterÒPoint option. For example:

tt = Table@Random@D ∗ 100, 8k, 1, 3<, 8j, 1, 3<D;

SuperWidgetTable@tt, DigitsÒAfterÒPoint → 8Automatic, 2, Automatic<D êê SuperGUIRunModal

� Graphics �

Here the centre column has been formatted in fixed format, the other two columns have been left with the Automatic setting.

Note that fixed format numbers must be suitable in size for display without an exponent. The fixed point display uses right

alignment.

SuperWidgetTree

SuperWidgetTree@v,optsD Displays a tree stored in the associated variable v.

Tree super widget

The Super Widget Package 57

©2006 David Bailey



Background Background colour – default RGBColor[1,1,1]

SelectionFunction Function that will be called when a leaf node is selected. The argu-

ment will be the associated variable.

DoubleÒClickÒFunction Function that will be called a leaf node is double-clicked. The 

argument will be the associated variable. The first click of the double 

click will have already selected the node.

ToolÒTip Specifies a tooltip string.

PixelÒWidth Width in pixels, default 300. (scrolling will be used if the table size is 

not set large enough).

PixelÒHeight Height in pixels, default 200 (scrolling will be used if the table size is 

not set large enough).

Options for Tree super widget

TreeÒNode@name,spare,selD Represents a leaf (terminal) node with name and selection indicator 

(0 or 1). The spare argument can be used to hold user data

TreeÒNode@name,
spare,sel,sub−node−listD

Represents a non-terminal node.

Representation of tree structure

This creates a tree representation of a data structure, which should be setup as in this example:

Needs@"SuperWidgetPackage`"D

x = TreeÒNode@"Language", 0, 0, 8TreeÒNode@"French", 1,

0, 8TreeÒNode@"Country", 0, 0D, TreeÒNode@"Dictionary", 0, 0D<D,
TreeÒNode@"English", 0, 0, 8TreeÒNode@"Country", 0, 0D, TreeÒNode@"England", 0, 0D,

TreeÒNode@"USA", 0, 0D, TreeÒNode@"Australia", 0, 0D<D,
TreeÒNode@"Dictionary", 0, 0D<D;

The first argument of each TreeÒNode object is the name of that node, the second argument is spare, and could be used to

hold additional data. The third argument will be 1 if that node is selected, and the fourth argument is a list of sub-nodes of

the tree. It is omitted for a terminal node. The SelectionFunction option can be used to supply a function to be called

each time a selection is made. Here is a simple example which displays all the permutations of five objects as a tree:

58 The Super Widget Package

©2006 David Bailey



treeÒfn@x_D := Print@Cases@x, TreeÒNode@_, _, 1D, ∞DD;
buildÒtree@prefix_String, items_ListD := Module@8s<,

If@Length@itemsD 
 0,

TreeÒNode@prefix, 0, 0D,
TreeÒNode@prefix > "...", 0, 0,

Map@buildÒtree@prefix > ToString@�D, DeleteCases@items, �DD &, itemsD
D

D
D;

x = buildÒtree@"", 81, 2, 3, 4, 5<D;
SuperWidgetTree@x, SelectionFunction → treeÒfn,

PixelÒWidth → 300, PixelÒHeight → 300D êê SuperGUIRunModal

8<

8TreeÒNode@32415, 0, 1D<

A more substantial example of the use of this widget is included in the larger examples.

Tip!  Use  the  single-click  function  to  perform  reversible  operations,  and  the  double-click  function  (if  any)  to

perform less easily reversed operations – the double click is a more deliberate act. Some people have difficulty performing a

double click - so it is helpful to provide a button that does the same operation. 

SuperWidgetPanel

SuperWidgetPanel@v,widgetlist1,
optsD

Creates a panel which contains other widgets. The

panel is not itself visible,

but is useful as a way of grouping widgets for more elaborate layouts.

Panel super widget

BorderÒColor Border colour – default RGBColor[0,0,0] ,

or no border if BorderÒSize is not set. The

UK spelling – BorderÒColour will also work.

BorderÒSize Border size – defaults to 0 unless BorderÒColor has been set, when it 

defaults to 1.

Options for Panel super widget

A  common  use  for  a  panel  is  to  make  a  vertical  display  of  buttons  to  be  placed  alongside  another,  larger  control.  For

example:

Needs@"SuperWidgetPackage`"D

The Super Widget Package 59

©2006 David Bailey



txt = "To be or not to be\nHTo be continued.....L";
888SuperWidgetPanel@Null,
8SuperWidgetButton@Null, "Test1", fffD,
SuperWidgetButton@Null, "Test2", fffD,
SuperWidgetButton@Null, "Test3", fffD,
SuperWidgetButton@Null, "Test4", fffD
<
D, ¶0<, ¶10, SuperWidgetTextEditor@txt, PixelÒWidth → 300, PixelÒHeight → 200D<< êê
SuperGUIRunModal

The  border  options  can  be  used  to  achieve  special  effects,  and  can  also  sometimes  be  useful  to  pick  out  the  location  of

panels while trying to achieve particular layout designs.

SuperWidgetTabPanel

SuperWidgetTabPanel@v,88<name1>
,widgetlist1<,...<D

Creates a tab panel where each 'pane' has the specified name and 

contents (more super widgets). This is useful for condensing a large 

number of options into a small panel.

.

Tab panel super widget

MinimumÒWidth Forces a minimum width in pixels for the structure – to ensure the 

tabs are displayed in one line

.

Options for SuperWidgetTabPanel

This  creates  a  tab  panel,  in  which  different  super  widgets  are  displayed  on  different  panes  which  the  user  can  select  by

clicking on their names. The first argument is the controlling variable, the second is a list of pairs. Each pair represents one

sub-panel of this widget, and consists of a name and a list of super widgets to appear on that pane. All this is best illustrated

by a simple example:

Needs@"SuperWidgetPackage`"D

p1 = 1; p2 = 2; p3 = 3; p4 = 4; p5 = 5; p6 = 6;

SuperGUIRunModal@SuperWidgetTabPanel@tfr, 8
8"Parameters 1, 2, 3", 8

¶10, 8"Parameter 1", SuperWidgetIntegerBox@p1D<,
¶10, 8"Parameter 2", SuperWidgetIntegerBox@p2D<,
¶10, 8"Parameter 3", SuperWidgetIntegerBox@p3D<,
¶10

<< , 8"Parameters 4, 5, 6", 8
¶10, 8"Parameter 4", SuperWidgetIntegerBox@p4D<,
¶10, 8"Parameter 5", SuperWidgetIntegerBox@p5D<,
¶10, 8"Parameter 6", SuperWidgetIntegerBox@p6D<,
¶10

<
<

<, MinimumÒWidth → 250

D
D;

60 The Super Widget Package

©2006 David Bailey



The option MinimumÒWidth can be used to force the tabs to be laid out horizontally. If you remove this option from the

above example, the result is rather ugly.

SuperWidgetLabelledBox – grouping things in a pleasing 

way

SuperWidgetLabelledBox@
v,label,contents,optsD

Creates a box with a label to group other widgets.The' contents'

should be a list of super widgets to include in the box.The

box edges appear as if scored into the surface of the window,

and the label is spliced in on the top edge.

Labelled box super widget

This  widget  is  designed  to  make a  scored  rectangular  box  to  group  a  set  of  controls  within it.  The  arguments  are  control

variable, name of box, and a list of the controls to placed within it. For example:

Needs@"SuperWidgetPackage`"D

8¶10, 8¶10, "Solution procedure", ¶10<, ¶10, SuperWidgetLabelledBox@
Null, "Integration method", 8¶20, SuperWidgetRadioButtonGroup@k,

8"Analytic", "Series expansion", "Numerical integration"<D, ¶20<D,
¶10, 8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<, ¶10< êê SuperGUIRunModal

Wizards
A wizard  (at  least  in the jargon  of  GUI  interfaces!)  is  a  window of  fixed size  which steps  the  user  through a  sequence of

operations.  The  left  hand  panel  typically  contains  a  list  of  all  the  steps  with  the  current  one  highlighted.  The  right  panel

contains the super widgets required to obtain the data. The user is free to use the buttons at the bottom to navigate through

the steps or to abort if he wishes. Wizards are top-level objects – in other words, they should not be embedded inside frames

or other widgets – they are analogous to frames or dialogs. In the SWP, wizards are created using SuperWidgetWizard,

and the individual pages of the wizard are represented by WizardÒPage objects.

SuperWidgetWizard@v,contents,
optsD

Creates wizard with the given contents, which should be a list of 

WizardÒPage objects. The control variable, v, is updated with number 

of the current page which is on display (remember that this can move 

in either direction).

.

Wizard super widget

The Super Widget Package 61

©2006 David Bailey



CloseFunction Function that is called when the wizard closes .

SideÒBarÒTitle Title for the left had panel .

Title Overall title .

WizardÒSteps A list of names for the various steps .

PageÒTurnÒFunction Function to call (with the control variable as argument) each time a 

new page is to be displayed.

Options for SuperWidgetWizard

WizardÒPage objects are not super widgets as such, and have no control variable, they are only used inside SuperWid�

getWizard.

WizardÒPage@contents,optsD Represents one page of a wizard with the given contents (a list of 

super widgets).

.

Wizard page object

Title Title for this page .

Options for WizardÒPage

A wizard is normally created using SuperGUIRunModal,  which will return 1 for a successful completion of the wizard,

and 0 if the wizard is canceled or  closed.  It  is important to test  this value to avoid proceeding with a computation that the

user intended to cancel.

Each page of the wizard contains three navigation buttons, "Back", "Cancel", and "Next" or "Finish" as appropriate. Usually

some of  these  buttons need to  be  greyed out  until  suitable  data  has been  supplied  by the user.  In  the following numerical

integration  example,  the  checkÒok  function  prevents  the  user  progressing  to  the  third  page  of  the  wizard  until  he  has

entered both limits, and it also tests that the result will not be complex in the case that the Sqrt function is selected.

Tip!  Use Although it is tempting to avoid the extra complexity involved in controlling the button states, your user

will not thank you for the result! Part  of  the unwritten 'contract'  of using a  wizard is that the program checks the data  and

keeps the user safe.

62 The Super Widget Package

©2006 David Bailey



guiÒintegral@D :=

Module@8fn, limitÒ1, limitÒ2, explanationÒ1, explanationÒ2, ptf, checkÒok<,
fn = "Sin";

checkÒok@_D := Module@8<,
Print@limitÒ1, " ", limitÒ2, " ", NumericQ@limitÒ1DD;
If@NumericQ@limitÒ1D &&

NumericQ@limitÒ2D && Hfn ≠ "Sqrt" »» HlimitÒ1 ≥ 0 && limitÒ2 ≥ 0LL,
SetÒWizardÒButtonÒState@xxx, "Next", 2, TrueD,
SetÒWizardÒButtonÒState@xxx, "Next", 2, FalseD

D
D;

limitÒ1 =.;

limitÒ2 =.;

explanationÒ1 =

"Numerical integration operates on a \nfunction between numerical limits.

First you must choose the function:\n";

explanationÒ2 = "Now select the lower and upper bounds of integration\n";

ptf@pageÒno_D := If@pageÒno 
 3, SetÒLabelÒContents@resultÒvar,
ToString@NIntegrate@ToExpression@fnD@xD, 8x, limitÒ1, limitÒ2<DDDD;

checkÒok@0D;
SuperGUIRunModal@SuperWidgetWizard@xxx, 8WizardÒPage@

8
explanationÒ1,
¶10,

8"Requred function:",

SuperWidgetComboBox@fn, 8"Sin", "Cos", "Sqrt"<, ChangeFunction → checkÒokD<
<, Title −> "Select a function to integrate"D, WizardÒPage@8explanationÒ2,
¶10,

8"Lower limit: ", Í, SuperWidgetRealBox@limitÒ1, ChangeFunction → checkÒokD<,
¶10,

8"Upper limit: ", Í, SuperWidgetRealBox@limitÒ2, ChangeFunction → checkÒokD<<,
Title −> "Integration limits"D,

WizardÒPage@88"The result of the integral is",

SuperWidgetLabel@resultÒvar, ""D<
<, Title −> "Result"D<,

SideÒBarÒTitle −> "Things to do",

Title −> "Numerical integration wizard",

WizardÒSteps → 8"Select function", "Select limits", "View result"<,
PageÒTurnÒFunction → ptfD

D
D

The Super Widget Package 63

©2006 David Bailey



guiÒintegral@D

limitÒ1$24954 limitÒ2$24954 False

0 limitÒ2$24954 False

0 1 False

0

 

 

64 The Super Widget Package

©2006 David Bailey



Observe  that  a  typical  wizard  contains  a  lot  of  super  widgets  (some  for  each  page)  and  so  may take  a  little  longer  to  be

displayed. Note also that every page of the wizard is created at once – even though all but the first are initially covered up.

Thus, for example, if page 5 displays a graph created out of data collected on the previous four pages, you should supply a

'temporary graphic' to prevent problems.

Using UNICODE characters in input boxes
Java uses UNICODE for all its character  manipulations – just like Mathematica. This means, that, in principle,  UNICODE

characters can be used in input boxes (In other contexts, it is probably easier to use an image). There are several details to

consider:

è The normal Java font does not show all UNICODE characters, and some (unfortunately including \ [Breve]) are displayed

as modifiers of a previous character.

The Super Widget Package 65

©2006 David Bailey



as modifiers of a previous character.

è Although it is possible to paste UNICODE characters from Mathematica into Java input boxes, special provision, such as

the use of accelerators, must be supplied to input such characters otherwise.

Here is a simple example:

alpha@D := H
zz = zz > "α";

UpdateWidgetValue@zzD
L;

beta@D := H
zz = zz > "β";

UpdateWidgetValue@zzD
L;

gamma@D := H
zz = zz > "Γ";

UpdateWidgetValue@zzD
L;

zz = "α+β+Γ";

SuperWidgetFrame@Null, 88¶10, "Enter desired expression", ¶10<,
¶10,

SuperWidgetStringBox@zzD
<, Menu → 88"Char", 88"Alpha", alpha, "Alt−A"<,

8"Beta", beta, "Alt−B"<, 8"Gamma", gamma, "Alt−G"<<<<D êê SuperGUIRunModal

Making arrays of widgets (new at Version 4.70)
Prior  to  version  4.70,  it  was  quite  hard  to  create  an  array  of  widgets  because  each  widget  required  its  own  associated

variable.  Now it  is much easier  to achieve this using an array expression.  However a little care  is still  needed  because the

array  expression  cannot  contain  variables  because  it  is  not  evaluated  immediately  (super  Widgets  all  have  the  HoldFirst

attribute). For example:

data = 810, 20, 30<;
Table@With@8k = k<, SuperWidgetIntegerBox@data@@kDDDD, 8k, 1, 3<D êê SuperGUIRunModal;

data

810, 42, 30<

Note that the older way to achieve this remains valid, but is superceded by this new mechanism.

Variable scoping
Experienced users of Mathematica will have noticed that many of the SWP examples use globally scoped variables. This is

more or  less  inevitable  because  variables  provide  the 'glue' between the various  widgets. For  example,  the  variable  that  is

passed to SuperWidgetIntegerBox is also the variable you would use to grey out the box. For this reason, it is recommended

that  you either  use very long,  distinctive names for  global  variables,  or  place  SWP code  inside a  package.  This  can obvi-

ously be done after  the code  has been developed,  and therefore  none of  the SWP examples have been complicated in this

way.

66 The Super Widget Package

©2006 David Bailey



Special restrictions applying to modeless windows
Normally it is suggested that you create windows using SuperGUIRunModal. This function will create a modal window

which takes control while it is visible (except if it creates additional windows). Modal windows have no special limitations.

Modeless windows – created using SuperGUIRun – are analogous to palettes in that they can be accessed by the user as

required – alongside other windows. A modeless window can also stay open after the Mathematica command that created it

has completed and the FrontEnd is waiting for the next command. Modeless windows are subject to the following restriction:

A top-level  modeless  window cannot  open  additional  windows –  i.e.  a  button,  menu,  etc.  that  attempts  to  create  an  addi-

tional window will cause a fault. 

Note that a modal top-level window can create both modal and modeless windows and these are not subject  to this restric-

tion because they are not top-level. 

The modeless windows that are created as part of a multiple document interface (MDI) are also not subject to this restriction.

SuperWidgetDesktop, and the multiple document 

interface.

StartÒPoint 8x,y< location of first child window.

Options for SuperWidgetDesktop

Some GUI applications – such as word processors and image editors – use what is known (at least in Windows parlance) as

a  multiple  document  interface  (MDI).  The  application  consists  of  one  large  window containing  several  movable  smaller

windows within it.  The  user  can  work  in  any of  these  windows just  by  clicking  between  them (they  are  modeless  among

themselves) and can also access controls  from the back window (typically just a menu and toolbars)  without obscuring the

various documents.

If you are designing an application  in which you are  thinking of using modeless windows, you should certainly consider if

MDI would be suitable.

Creating  an  MDI  effect  is  extremely simple.  You  create  the  back  window as  a  modal  window (that  will  normally remain

visible for the entire duration of your program) in the normal way, but you include a SuperWidgetDesktop to represent  the

bulk of the window that you wish to use to display documents. It is hard to illustrate this effect usefully in a trivial example,

but here is a program in which each time the File/New menu item is activated,  a new text editor  window is opened  with a

random text string. Notice that each sub-window is given a title – otherwise the effect can be quite confusing. Note also that

the sub-windows must be opened by SuperGUIRun not SuperGUIRunModal.

The Super Widget Package 67

©2006 David Bailey



docÒno = 0;

NewÒDocument@D := Module@8fr, str<,
docÒno++;
str = FromCharacterCode@Table@Random@Integer, 865, 90<D, 810<DD;
SuperWidgetFrame@fr, 8

SuperWidgetTextEditor@strD
<, Desktop → ddd, Title −> "Example " > ToString@docÒnoDD êê SuperGUIRun

D;

SuperGUIRunModal@SuperWidgetFrame@Null, 8
SuperWidgetDesktop@ddd, 8

ImageÒFile@SuperWidgetPackagePath@D > "\\ExampleFiles\\Consultancy.gif"D
<, Background → RGBColor@1.0, 1.0, 0.7D, PixelÒWidth → 300, PixelÒHeight → 200D

<, Menu → 88"File", 88"New", NewÒDocument<<<<DD

In the above example, I ran the above code, stretched the top window a little, and activated the File/New menu item twice.

Try the above example, and experiment with maximising the main window and/or one of the sub-windows. 

68 The Super Widget Package

©2006 David Bailey



GetÒTopmostÒMDIÒFrame@varD If var is the control variable of a SuperWidgetDesktop, returns the 

control variable name (as a string) of the topmost child window. 

Otherwise returns an empty string

Functions to control the behaviour SuperWidgetDesktop

Dynamic manipulation of basic data input widget 

properties
The  three  super  widgets  –  SuperWidgetIntegerBox,  SuperWidgetRealBox,  and  SuperWidgetStringBox

have a number of properties that are handled automatically or set at startup. In certain cases it may be useful to adjust these

settings dynamically using the following functions:

GrabÒFocus@vD Shifts the input focus to the widget associated with variable v.

SetÒEditable@v,valD Sets the editability of the widget associated with variable v to the 

value val (True or False).

LastÒFocusÒTime@vD Returns a representation in miliseconds of the time when the widget 

associated with variable v last acquired focus.

SelectÒAll@vD Selects all the text in the widget associated with variable v – which it 

makes it easy for the user to type over the box.

SetÒTextÒColour@v,colourD Sets the text colour of the widget associated with variable v. Any 

Mathematica colour representation can be used.

SetÒTextÒColor@v,colourD Sets the text colour of the widget associated with variable v. Any 

Mathematica colour representation can be used.

SetÒBackgroundÒColour@v,colourD Sets the background colour of the widget associated with variable v. 

Any Mathematica colour representation can be used.

SetÒBackgroundÒColor@v,colourD Sets the background colour of the widget associated with variable v. 

Any Mathematica colour representation can be used.

Functions to control the behaviour of basic input widgets

Most  of  these  functions  are  self  explanatory,  however  the  purpose  of  the  function  LastÒFocusÒTime  may be  less  obvious.

Suppose you had a form with a number of input fields and you wished to know which one had focus at a given moment –

say from within a menu function. The problem is that the widget in question would momentarily lose focus when the menu

was activated,  so  merely seeking a  widget  that  has  focus  is  not  particularly  useful.  However,  by comparing  the  last  focus

times of the various fields in question, it is possible to determine the box that has effective focus at a given instance.

Remembering what the user did last
Many GUI applications  – such as Mathematica  itself – remember various user-preferences both within a session and from

one session to another. For example, the first time that a user tries to open a file with your program, he or she will probably

have to  navigate through the filestore to  find the appropriate  directory.  This  can be very tedious,  and it  is handy if  he can

start the next file open dialog at the place where the previous file was located. To remember this information, a persistence

file name must be supplied:

The Super Widget Package 69

©2006 David Bailey



SetÒApplicationÒDumpÒFile@fileD

This should be called at the start of a program. It will load any information from the file if it exists, and remember the name

of  the  file  for  subsequent  operations.  The  string  argument  can  be  a  complete  path,  or  a  simple  file  name,  which  will  be

located in $UserBaseDirectory.

One  of  the  simplest  uses  of  this  feature  is  to  add  the  option  UseÒLastÒDirectory->True  to  the  OpenÒFileÒDialog  or

SaveÒFileÒDialog routines. In combination with the previous call, to set up the file to contain the information, this will

make the application remember where the user saves his files, and will be a huge time saver.

Future  versions  of  the  SWP  may define  further  properties  that  can  be  preserved  across  sessions,  but  you  can  also  define

properties of your own that operate in this way:

AddÒApplicationÒVariable@varD

This  will associate  the given variable  with the persistence  file  already defined.  To  ensure that  the latest  values of  all  such

variables are saved away before an application exits, you should call:

SaveÒApplicationÒDumpÒFile@D

Be aware, however, that data may be saved at other times.

Accessing the Java layer
Although the  SWP  has  been  designed  to  hide  J/Link,  and  Java  layers  that  underpin  it,  it  is  sometimes useful  –  or  simply

interesting  –  to  access  the  Java  objects  that  implement  the  GUI.  This  can  be  achieved  by  passing  any  control  variable

corresponding to an active widget to the JavaÒWidget function. 

To understand how to use the Java object,  consult the documentation for the J/Link package (which is automatically loaded

with the SWP).

For example, in the following code the Java object  for the integer box is obtained and the setVisible method is invoked to

hide the widget!

Needs@"SuperWidgetPackage`"D

v = 42;

8¶10,
8¶10, "Here is an integer box waiting to be hidden!", ¶10<,
8¶10, SuperWidgetIntegerBox@vD, ¶10<,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<,
¶10

< êê SuperGUIRun

� GUIObject �

70 The Super Widget Package

©2006 David Bailey



JavaÒWidget@vD@setVisible@FalseD

The  integer  box  is  only hidden,  and  can  be  made  visible  again  by  calling  the  setVisible  method again  with the  argument

True. The entier set of available methods can be obtained by using the J/Link function Methods:

Methods@JavaÒWidget@vDD

boolean actionHjava.awt.Event, ObjectL

void addActionListenerHjava.awt.event.ActionListenerL

void addAncestorListenerHjavax.swing.event.AncestorListenerL

void addCaretListenerHjavax.swing.event.CaretListenerL

void addComponentListenerHjava.awt.event.ComponentListenerL

void addContainerListenerHjava.awt.event.ContainerListenerL

void addFocusListenerHjava.awt.event.FocusListenerL

void addHierarchyBoundsListenerHjava.awt.event.HierarchyBoundsListenerL

void addHierarchyListenerHjava.awt.event.HierarchyListenerL

void addInputMethodListenerHjava.awt.event.InputMethodListenerL

java.awt.Component addHjava.awt.ComponentL

java.awt.Component addHjava.awt.Component, intL

void addHjava.awt.Component, ObjectL

void addHjava.awt.Component, Object, intL

void addHjava.awt.PopupMenuL

void addKeyListenerHjava.awt.event.KeyListenerL

static javax.swing.text.Keymap addKeymapHString, javax.swing.text.KeymapL

void addMouseListenerHjava.awt.event.MouseListenerL

void addMouseMotionListenerHjava.awt.event.MouseMotionListenerL

void addMouseWheelListenerHjava.awt.event.MouseWheelListenerL

void addNotifyHL

void addPropertyChangeListenerHjava.beans.PropertyChangeListenerL

void addPropertyChangeListenerHString, java.beans.PropertyChangeListenerL

java.awt.Component addHString, java.awt.ComponentL

void addVetoableChangeListenerHjava.beans.VetoableChangeListenerL

void applyComponentOrientationHjava.awt.ComponentOrientationL

boolean areFocusTraversalKeysSetHintL

java.awt.Rectangle boundsHL

int checkImageHjava.awt.Image, int, int, java.awt.image.ImageObserverL

int checkImageHjava.awt.Image, java.awt.image.ImageObserverL

void computeVisibleRectHjava.awt.RectangleL

boolean containsHint, intL

boolean containsHjava.awt.PointL

void copyHL

int countComponentsHL

java.awt.Image createImageHint, intL

java.awt.Image createImageHjava.awt.image.ImageProducerL

The Super Widget Package 71

©2006 David Bailey



java.awt.Image createImageHjava.awt.image.ImageProducerL

javax.swing.JToolTip createToolTipHL

java.awt.image.VolatileImage createVolatileImageHint, intL

java.awt.image.VolatileImage createVolatileImageHint, int, java.awt.ImageCapabilitiesL

void cutHL

void deliverEventHjava.awt.EventL

void disableHL

void dispatchEventHjava.awt.AWTEventL

void doLayoutHL

void enableHL

void enableHbooleanL

void enableInputMethodsHbooleanL

boolean equalsHObjectL

java.awt.Component findComponentAtHint, intL

java.awt.Component findComponentAtHjava.awt.PointL

void firePropertyChangeHString, boolean, booleanL

void firePropertyChangeHString, byte, byteL

void firePropertyChangeHString, char, charL

void firePropertyChangeHString, double, doubleL

void firePropertyChangeHString, float, floatL

void firePropertyChangeHString, int, intL

void firePropertyChangeHString, long, longL

void firePropertyChangeHString, short, shortL

javax.accessibility.AccessibleContext getAccessibleContextHL

javax.swing.Action getActionHL

java.awt.event.ActionListener getActionForKeyStrokeHjavax.swing.KeyStrokeL

java.awt.event.ActionListener@D getActionListenersHL

javax.swing.ActionMap getActionMapHL

javax.swing.Action@D getActionsHL

float getAlignmentXHL

float getAlignmentYHL

javax.swing.event.AncestorListener@D getAncestorListenersHL

boolean getAutoscrollsHL

java.awt.Color getBackgroundHL

javax.swing.border.Border getBorderHL

java.awt.Rectangle getBoundsHL

java.awt.Rectangle getBoundsHjava.awt.RectangleL

javax.swing.text.Caret getCaretHL

java.awt.Color getCaretColorHL

javax.swing.event.CaretListener@D getCaretListenersHL

int getCaretPositionHL

Class getClassHL

Object getClientPropertyHObjectL

java.awt.image.ColorModel getColorModelHL

int getColumnsHL

java.awt.Component getComponentAtHint, intL

java.awt.Component getComponentAtHjava.awt.PointL

int getComponentCountHL

java.awt.Component getComponentHintL

java.awt.event.ComponentListener@D getComponentListenersHL

java.awt.ComponentOrientation getComponentOrientationHL

java.awt.Component@D getComponentsHL

int getConditionForKeyStrokeHjavax.swing.KeyStrokeL

java.awt.event.ContainerListener@D getContainerListenersHL

java.awt.Cursor getCursorHL

int getDebugGraphicsOptionsHL

72 The Super Widget Package

©2006 David Bailey



int getDebugGraphicsOptionsHL

static java.util.Locale getDefaultLocaleHL

java.awt.Color getDisabledTextColorHL

javax.swing.text.Document getDocumentHL

boolean getDragEnabledHL

java.awt.dnd.DropTarget getDropTargetHL

char getFocusAcceleratorHL

java.awt.Container getFocusCycleRootAncestorHL

java.awt.event.FocusListener@D getFocusListenersHL

boolean getFocusTraversalKeysEnabledHL

java.util.Set getFocusTraversalKeysHintL

java.awt.FocusTraversalPolicy getFocusTraversalPolicyHL

java.awt.Font getFontHL

java.awt.FontMetrics getFontMetricsHjava.awt.FontL

java.awt.Color getForegroundHL

java.awt.Graphics getGraphicsHL

java.awt.GraphicsConfiguration getGraphicsConfigurationHL

int getHeightHL

java.awt.event.HierarchyBoundsListener@D getHierarchyBoundsListenersHL

java.awt.event.HierarchyListener@D getHierarchyListenersHL

javax.swing.text.Highlighter getHighlighterHL

int getHorizontalAlignmentHL

javax.swing.BoundedRangeModel getHorizontalVisibilityHL

boolean getIgnoreRepaintHL

java.awt.im.InputContext getInputContextHL

javax.swing.InputMap getInputMapHL

javax.swing.InputMap getInputMapHintL

java.awt.event.InputMethodListener@D getInputMethodListenersHL

java.awt.im.InputMethodRequests getInputMethodRequestsHL

javax.swing.InputVerifier getInputVerifierHL

java.awt.Insets getInsetsHL

java.awt.Insets getInsetsHjava.awt.InsetsL

java.awt.event.KeyListener@D getKeyListenersHL

javax.swing.text.Keymap getKeymapHL

static javax.swing.text.Keymap getKeymapHStringL

java.awt.LayoutManager getLayoutHL

java.util.EventListener@D getListenersHClassL

java.util.Locale getLocaleHL

java.awt.Point getLocationHL

java.awt.Point getLocationHjava.awt.PointL

java.awt.Point getLocationOnScreenHL

java.awt.Insets getMarginHL

java.awt.Dimension getMaximumSizeHL

java.awt.Dimension getMinimumSizeHL

java.awt.event.MouseListener@D getMouseListenersHL

java.awt.event.MouseMotionListener@D getMouseMotionListenersHL

java.awt.event.MouseWheelListener@D getMouseWheelListenersHL

String getNameHL

javax.swing.text.NavigationFilter getNavigationFilterHL

java.awt.Component getNextFocusableComponentHL

java.awt.Container getParentHL

java.awt.peer.ComponentPeer getPeerHL

java.awt.Dimension getPreferredScrollableViewportSizeHL

java.awt.Dimension getPreferredSizeHL

java.beans.PropertyChangeListener@D getPropertyChangeListenersHL

java.beans.PropertyChangeListener@D getPropertyChangeListenersHStringL

The Super Widget Package 73

©2006 David Bailey



java.beans.PropertyChangeListener@D getPropertyChangeListenersHStringL

javax.swing.KeyStroke@D getRegisteredKeyStrokesHL

javax.swing.JRootPane getRootPaneHL

int getScrollableBlockIncrementHjava.awt.Rectangle, int, intL

boolean getScrollableTracksViewportHeightHL

boolean getScrollableTracksViewportWidthHL

int getScrollableUnitIncrementHjava.awt.Rectangle, int, intL

int getScrollOffsetHL

String getSelectedTextHL

java.awt.Color getSelectedTextColorHL

java.awt.Color getSelectionColorHL

int getSelectionEndHL

int getSelectionStartHL

java.awt.Dimension getSizeHL

java.awt.Dimension getSizeHjava.awt.DimensionL

String getTextHL

String getTextHint, intL throws javax.swing.text.BadLocationException

java.awt.Toolkit getToolkitHL

java.awt.Point getToolTipLocationHjava.awt.event.MouseEventL

String getToolTipTextHL

String getToolTipTextHjava.awt.event.MouseEventL

java.awt.Container getTopLevelAncestorHL

javax.swing.TransferHandler getTransferHandlerHL

Object getTreeLockHL

javax.swing.plaf.TextUI getUIHL

String getUIClassIDHL

boolean getVerifyInputWhenFocusTargetHL

java.beans.VetoableChangeListener@D getVetoableChangeListenersHL

java.awt.Rectangle getVisibleRectHL

int getWidthHL

int getXHL

int getYHL

boolean gotFocusHjava.awt.Event, ObjectL

void grabFocusHL

boolean handleEventHjava.awt.EventL

boolean hasFocusHL

int hashCodeHL

void hideHL

boolean imageUpdateHjava.awt.Image, int, int, int, int, intL

java.awt.Insets insetsHL

boolean insideHint, intL

void invalidateHL

boolean isAncestorOfHjava.awt.ComponentL

boolean isBackgroundSetHL

boolean isCursorSetHL

boolean isDisplayableHL

boolean isDoubleBufferedHL

boolean isEditableHL

boolean isEnabledHL

boolean isFocusableHL

boolean isFocusCycleRootHL

boolean isFocusCycleRootHjava.awt.ContainerL

boolean isFocusOwnerHL

boolean isFocusTraversableHL

boolean isFocusTraversalPolicySetHL

boolean isFontSetHL

74 The Super Widget Package

©2006 David Bailey



boolean isForegroundSetHL

boolean isLightweightHL

static boolean isLightweightComponentHjava.awt.ComponentL

boolean isManagingFocusHL

boolean isMaximumSizeSetHL

boolean isMinimumSizeSetHL

boolean isOpaqueHL

boolean isOptimizedDrawingEnabledHL

boolean isPaintingTileHL

boolean isPreferredSizeSetHL

boolean isRequestFocusEnabledHL

boolean isShowingHL

boolean isValidHL

boolean isValidateRootHL

boolean isVisibleHL

boolean keyDownHjava.awt.Event, intL

boolean keyUpHjava.awt.Event, intL

void layoutHL

void listHL

void listHjava.io.PrintStreamL

void listHjava.io.PrintStream, intL

void listHjava.io.PrintWriterL

void listHjava.io.PrintWriter, intL

static void loadKeymapHjavax.swing.text.Keymap, javax.swing.text.JTextComponent$KeyBinding

java.awt.Component locateHint, intL

java.awt.Point locationHL

boolean lostFocusHjava.awt.Event, ObjectL

java.awt.Dimension minimumSizeHL

java.awt.Rectangle modelToViewHintL throws javax.swing.text.BadLocationException

boolean mouseDownHjava.awt.Event, int, intL

boolean mouseDragHjava.awt.Event, int, intL

boolean mouseEnterHjava.awt.Event, int, intL

boolean mouseExitHjava.awt.Event, int, intL

boolean mouseMoveHjava.awt.Event, int, intL

boolean mouseUpHjava.awt.Event, int, intL

void moveCaretPositionHintL

void moveHint, intL

void nextFocusHL

void notifyHL

void notifyAllHL

void paintAllHjava.awt.GraphicsL

void paintComponentsHjava.awt.GraphicsL

void paintImmediatelyHint, int, int, intL

void paintImmediatelyHjava.awt.RectangleL

void paintHjava.awt.GraphicsL

void pasteHL

void postActionEventHL

boolean postEventHjava.awt.EventL

java.awt.Dimension preferredSizeHL

boolean prepareImageHjava.awt.Image, int, int, java.awt.image.ImageObserverL

boolean prepareImageHjava.awt.Image, java.awt.image.ImageObserverL

void printAllHjava.awt.GraphicsL

void printComponentsHjava.awt.GraphicsL

void printHjava.awt.GraphicsL

void putClientPropertyHObject, ObjectL

The Super Widget Package 75

©2006 David Bailey



void putClientPropertyHObject, ObjectL

void readHjava.io.Reader, ObjectL throws java.io.IOException

void registerKeyboardActionHjava.awt.event.ActionListener, javax.swing.KeyStroke, intL

void registerKeyboardActionHjava.awt.event.ActionListener, String, javax.swing.KeyStroke

void removeActionListenerHjava.awt.event.ActionListenerL

void removeAllHL

void removeAncestorListenerHjavax.swing.event.AncestorListenerL

void removeCaretListenerHjavax.swing.event.CaretListenerL

void removeComponentListenerHjava.awt.event.ComponentListenerL

void removeContainerListenerHjava.awt.event.ContainerListenerL

void removeFocusListenerHjava.awt.event.FocusListenerL

void removeHierarchyBoundsListenerHjava.awt.event.HierarchyBoundsListenerL

void removeHierarchyListenerHjava.awt.event.HierarchyListenerL

void removeInputMethodListenerHjava.awt.event.InputMethodListenerL

void removeHintL

void removeHjava.awt.ComponentL

void removeHjava.awt.MenuComponentL

void removeKeyListenerHjava.awt.event.KeyListenerL

static javax.swing.text.Keymap removeKeymapHStringL

void removeMouseListenerHjava.awt.event.MouseListenerL

void removeMouseMotionListenerHjava.awt.event.MouseMotionListenerL

void removeMouseWheelListenerHjava.awt.event.MouseWheelListenerL

void removeNotifyHL

void removePropertyChangeListenerHjava.beans.PropertyChangeListenerL

void removePropertyChangeListenerHString, java.beans.PropertyChangeListenerL

void removeVetoableChangeListenerHjava.beans.VetoableChangeListenerL

void repaintHL

void repaintHint, int, int, intL

void repaintHjava.awt.RectangleL

void repaintHlongL

void repaintHlong, int, int, int, intL

void replaceSelectionHStringL

boolean requestDefaultFocusHL

void requestFocusHL

boolean requestFocusHbooleanL

boolean requestFocusInWindowHL

void resetKeyboardActionsHL

void reshapeHint, int, int, intL

void resizeHint, intL

void resizeHjava.awt.DimensionL

void revalidateHL

void scrollRectToVisibleHjava.awt.RectangleL

void selectAllHL

void selectHint, intL

void setActionCommandHStringL

void setActionHjavax.swing.ActionL

void setActionMapHjavax.swing.ActionMapL

void setAlignmentXHfloatL

void setAlignmentYHfloatL

void setAutoscrollsHbooleanL

void setBackgroundHjava.awt.ColorL

void setBorderHjavax.swing.border.BorderL

void setBoundsHint, int, int, intL

void setBoundsHjava.awt.RectangleL

void setCaretColorHjava.awt.ColorL

void setCaretHjavax.swing.text.CaretL

76 The Super Widget Package

©2006 David Bailey



void setCaretHjavax.swing.text.CaretL

void setCaretPositionHintL

void setColumnsHintL

void setComponentOrientationHjava.awt.ComponentOrientationL

void setCursorHjava.awt.CursorL

void setDebugGraphicsOptionsHintL

static void setDefaultLocaleHjava.util.LocaleL

void setDisabledTextColorHjava.awt.ColorL

void setDocumentHjavax.swing.text.DocumentL

void setDoubleBufferedHbooleanL

void setDragEnabledHbooleanL

void setDropTargetHjava.awt.dnd.DropTargetL

void setEditableHbooleanL

void setEnabledHbooleanL

void setFocusableHbooleanL

void setFocusAcceleratorHcharL

void setFocusCycleRootHbooleanL

void setFocusTraversalKeysEnabledHbooleanL

void setFocusTraversalKeysHint, java.util.SetL

void setFocusTraversalPolicyHjava.awt.FocusTraversalPolicyL

void setFontHjava.awt.FontL

void setForegroundHjava.awt.ColorL

void setHighlighterHjavax.swing.text.HighlighterL

void setHorizontalAlignmentHintL

void setIgnoreRepaintHbooleanL

void setInputMapHint, javax.swing.InputMapL

void setInputVerifierHjavax.swing.InputVerifierL

void setKeymapHjavax.swing.text.KeymapL

void setLayoutHjava.awt.LayoutManagerL

void setLocaleHjava.util.LocaleL

void setLocationHint, intL

void setLocationHjava.awt.PointL

void setMarginHjava.awt.InsetsL

void setMaximumSizeHjava.awt.DimensionL

void setMinimumSizeHjava.awt.DimensionL

void setNameHStringL

void setNavigationFilterHjavax.swing.text.NavigationFilterL

void setNextFocusableComponentHjava.awt.ComponentL

void setOpaqueHbooleanL

void setPreferredSizeHjava.awt.DimensionL

void setRequestFocusEnabledHbooleanL

void setScrollOffsetHintL

void setSelectedTextColorHjava.awt.ColorL

void setSelectionColorHjava.awt.ColorL

void setSelectionEndHintL

void setSelectionStartHintL

void setSizeHint, intL

void setSizeHjava.awt.DimensionL

void setTextHStringL

void setToolTipTextHStringL

void setTransferHandlerHjavax.swing.TransferHandlerL

void setUIHjavax.swing.plaf.TextUIL

void setVerifyInputWhenFocusTargetHbooleanL

void setVisibleHbooleanL

void showHL

void showHbooleanL

The Super Widget Package 77

©2006 David Bailey



java.awt.Dimension sizeHL

String toStringHL

void transferFocusHL

void transferFocusBackwardHL

void transferFocusDownCycleHL

void transferFocusUpCycleHL

void unregisterKeyboardActionHjavax.swing.KeyStrokeL

void updateHjava.awt.GraphicsL

void updateUIHL

void validateHL

int viewToModelHjava.awt.PointL

void waitHlong, intL throws InterruptedException

void waitHlongL throws InterruptedException

void waitHL throws InterruptedException

void writeHjava.io.WriterL throws java.io.IOException

Needless to say, only a small proportion of these methods can be usefully called in this context!

Snapshot mode
Most of the examples in this guide are illustrated with pictures of the resultant windows. The pictures were created by using

snapshot  mode.  Calling  SetSnapshotMode[]  will  display  a  small  window containing  a  camera  and  a  count  of  stored

images  (initially  0).  Each  time  you  click  on  the  camera,  an  image  of  every  open  SWP  window  (except  the  camera!)  is

recorded.  These  images  can  be  obtained  as  Graphics  objects  using  GetSnapshots[]  and  displayed  in  the  usual  way

using Show. Simply close the camera window when you are finished with it.

An older version of this mechanism which recorded windows as they were closed was discontinued at version 2.81 in favour

of  this  new,  more  flexible  scheme.  For  partial  compatibility,  a  call  to  SetSnapshotMode[True]  will  execute  in  the

same way as SetSnapshotMode[].

As  of  version  4.16,  there  is  also  a  function  that  will  take  a  picture  of  any control  or  whole  window specified  by  control

variable:

x = 42;

SuperWidgetFrame@fff, 8SuperWidgetIntegerBox@xD<D êê SuperGUIRun

SnapÒComponent@fffD êê Show

SnapÒComponent@xD êê Show

Note that for this routine to work correctly, the window in question must be on screen, although it may be obscured by other

windows. It will be brought to the front as part of this operation.

Additional functions
The following functions help in constructing your GUI interface.

Ò Ò

78 The Super Widget Package

©2006 David Bailey



SetÒEnabledÒStatus[var,True/False]  –  This  will  enable/disable  a  control.  You  can  also  enable/disable  menu

items  by  passing  the  name  of  the  corresponding  function.  By  default,  everything  is  enabled.  This  function  can  be  called

before the window is displayed, to set things up initially, or on the fly to change a setting. For example, it may make sense to

start with a 'Save' option greyed out (disabled)  until the user has done something that might need saving. It is always worth

disabling features that are unusable in particular contexts – because it makes your GUI interface easier to use, and you don't

have to worry about what might happen if your code is called when it does not make sense.

MessageÒBeep[]  – This  creates  a beep sound via Java.  Beeps  are useful to remind the user that he has made an error,

and are also often useful while debugging a GUI application.  Later version of this function may take an argument to deter-

mine the type of noise produced.

UpdateWidgetValue[var] – The value of a widget – e.g. the number displayed in a SuperWidgetReal box – can

be changed programmatically using this function. You alter the value of a super widget's associated variable as desired, and

then  call  this  function  to  make the  change  visible.  By design,  no  ChangeFunction  calls  are  made  in  response  to  this,

because this could easily result in an infinite loop. Call any functions directly if necessary. This function has not (yet) been

implemented for  all  types  of  Super  Widgets,  and  obviously does  not  even make sense  in  all  cases.  It  will fault  where not

available.

GetURL[string] – This is a tidied up version of the function defined in the J/Link help files. You give it a URL string

and it copies the data from the internet to a temporary file and returns the name of the temporary file as its result (which you

can  then open  with OpenRead).  If  this  process  fails  for  any reason,  $Failed  is  returned.  Because  the  internet  is  never

100% reliable, you should always test for the $Failed return value.

HTTPÒPost[address,{{name1,value1}…}] – Performs an HTTP POST operation (equivalent to an HTML form)

to  the  given  URL.  The  second  argument  should  be  a  list  of  2-element  sub-lists  of  the  form {name,value}.  For  example,

consider the following HTML form:

<html><head><title>My Form</title></head><body>

<form action='http://something.com/process.php' method='post'>
<input type='text' name='mydata' size='60'/>
<input type='submit'/>

</form>
</body>
</html>

This would display a text input box whose contents could be submitted to a website by pressing the 'submit' button. Say the

text was 'Hello', the same operation could be achieved using the following call:

Needs@"SuperWidgetPackage`"D

HTTPÒPost@"http:êêsomething.comêprocess.php", 88"mydata", "Hello"<<D

In a more complex HTML form with several sections, each section would have a different name – so in the corresponding

call to HTTPÒPost, the list of name/value pairs would contain several terms.

If this function succeeds,  it returns whatever string of data  is sent by the website. If  it  fails (which is always possible  with

operations involving the internet) it returns $Failed – so it is important to test for this value. 

The following at example illustrates the use of this function to communicate with the SWP site.

ColorÒChooserÒDialog[]  –  Displays  a  dialog  to  permit  the  user  to  select  a  colour.  The  value  is  returned  as  an

RGBColor value.

The Super Widget Package 79

©2006 David Bailey



Ò Ò

RGBColor

FileÒOpenÒDialog[]  –  Displays  a  dialog  to  permit  the  user  to  select  an  existing  file.  If  the  user  selects  a  file,  it  is

returned as a string (ready to be opened by OpedRead),  Null is returned if no file is selected. This function can also take a

string argument to label the dialog box.

FileÒSaveÒDialog[] – Displays a dialog to permit the user to select a file to be written. If the user selects a file, it is

returned as a string (ready to be opened by OpenWrite),  Null is returned if no file is selected.

CloseÒFrame[var,opts]  –  Closes  the  window whose  SuperWidgetFrame  has  the  given  associated  variable,  or  the

window that contains a widget controlled by variable var. Typically called in an 'Exit' menu. The option ReturnÒValue

can be used to specify an integer value to be returned by SuperGUIRunModal.

JavaÒConsoleÒPrint[args]  – Prints its arguments on the Java console,  creating the console if necessary.  This can

be  useful  to  debug  GUI  applications,  particularly  those  that  use  concealed  notebooks  or  are  stand-alone.  Also,  once  the

console  has  been  created,  any  messages  that  are  generated  by  Java  code  (e.g.  calls  to  System.out.println)  will  also  be

displayed.

GetÒScreenÒSize[] – Returns the size in pixels of the screen as a 2-element list.

Using HTML inside super widgets
As you know, the SWP is based on Java to create the actual GUI. This means that you can exploit a very neat feature of the

Java/Swing classes. If you put an HTML string into controls such as SuperWidgetButton, SuperWidgetComboBox,  tool-tip

options,  etc.  this  will  be  displayed  as  HTML  –  not  as  a  boring  text  string.  This  can  be  used  to  generate  some  amazing

effects, including the use of images (although, it would seem animated GIF's sometimes only display their first frame), text

in several  fonts and/or  special  layout,  mixed text  and images,  etc.  Bear  in  mind that  the images you use can,  if  you wish,

have been created on the fly by your Mathematica code! 

Here we put images and text in a combo box:

Needs@"SuperWidgetPackage`"D

myFileName@z_, description_D := "html>img src=\"file:" > SuperWidgetPackagePath@D >

"êExampleFilesê" > z > "\">p>" > description > "êhtml>";

80 The Super Widget Package

©2006 David Bailey



x = 1;

txt = "";

8
¶10,

8¶10, "Select the component you wish to simulate", ¶10<,
¶10,

8¶10, "Component: ", SuperWidgetComboBox@x,
Map@myFileName@� > ".gif", �D &, 8"capacitor", "diode", "resistor"<DD, ¶10<,

¶10,

SuperWidgetTextEditor@txt, PixelÒHeight → 200D,
¶10

< êê SuperGUIRunModal

Note that it would be better to select images of the same size for this job! 

Tip!  In a practical application with a ChangeFunction it might be convenient to call ComboBoxÒIndex[x]  to

extract the position of the selected item (1,2,etc.) rather than work with the HTML string.

Here we are using an image as a tool tip:

The Super Widget Package 81

©2006 David Bailey



c3 
 1.0;

SuperWidgetFrame@Null, 8¶10,
8¶10, "The following variable should be changed with great care.", ¶10<,
¶10,

8"C3: ", SuperWidgetRealBox@c3, ToolÒTip −> "html>img src=\"file:" >

SuperWidgetPackagePath@D > "êExampleFilesêwarning.gif" > "\">êhtml>"D<,
¶10,

8¶0, SuperWidgetButton@Null, "OK", 1D, ¶0<,
¶10

<D êê SuperGUIRunModal

HTML can also be used to create an implicit SuperWidgetLabel, as the label of a button, as the labels of a tree, and in many

other  places.  However,  not  everywhere  can  process  HTML  –  for  example,  the  title  of  a  frame  or  of  a  SuperWidgetLa-

belledBox will not accept HTML. You should test the you can use HTML in a particular way before relying on it. In some

cases – such as tree widgets – Java does not seem to allow enough space to display the HTML.  Also, since this is a property

of the underlying Java implementation, there may be some variability between different platforms.

Tip!  As you can see, HTML strings make some aspects of the SWP a little redundant. I must admit, I only discov-

ered this feature of the Java swing classes fairly late in the development of the SWP. However, I suspect there may still be

value  in  using features  such  as  ImageÒFile  when they  are  sufficient  rather  than  creating  an  HTML  string.  For  simple

tasks the old notation is much easier to use, and I also suspect there is additional overhead involved in loading and executing

the general-purpose HTML layout code.

User-defined super widgets
Even  using  the  SWP,  definitions  of  large  and  complex  windows  can  easily  become  messy  and  repetitious.  One  way  to

reduce the clutter is to define your own super widgets.

DefineÒSuperÒWidget@widget:>widgetsD Define a new super widget in terms of one or more built-

in super widgets.

For example, consider the following definition:

Needs@"SuperWidgetPackage`"D

82 The Super Widget Package

©2006 David Bailey



SetAttributes@realPrompt, HoldFirstD;
DefineÒSuperÒWidget@
realPrompt@x_, p_StringD � 88"Parameter ", p, SuperWidgetRealBox@xD<<D

ReplaceAll::reps :

8835., 320.5, 311.5< is neither a list of replacement rules nor a valid

dispatch table, and so cannot be used for replacing. More…

8realPrompt@v1, "V1"D, realPrompt@v2, "V2"D, realPrompt@v3, "V3"D< êê SuperGUIRunModal

GetSnapshots@D êê Show;

The system will fault  if  you try to  define  a  super  widget which does  not  have attributes  HoldFirst  or  HoldAll,  or  is

otherwise  malformed.  Notice  in  particular  that  the  definition  uses  ß  (RuleDelayed),  so  that  the  right  hand  side  of  a

definition can contain arbitrary chunks of Mathematica code to determine what finally gets displayed. The only requirement

is that the end result is a widget, or  list of widgets and layout.

As  you  know,  a  simple  list  of  super  widgets  is  displayed  vertically,  nested  lists,  horizontally,  etc.  Within  a  user-defined

super widget, the top level list is displayed vertically, etc., regardless of the nesting of the user defined super widget within

the window as a whole. Thus a user defined super widget can be thought of as a self-contained widget in its own right.

The first argument to a user-defined super widget must be an associated variable (or Null), just  as with the built-in super

widgets, however a user-defined widget may have attribute HoldAll – which enables it to pass on additional arguments as

control variables to the various super widgets into which it resolves.

Concealing notebooks
If you have being trying the examples as you read this user guide, you may already have encountered the problem that Java

windows can  easily  be  obscured  by  a  Mathematica  notebook.  The  end  user  (who  may  be  fairly  naive)  may  start  a  GUI

application and then click on the notebook. If the application opens with a modal window, this may give the impression that

Mathematica has hung, because the only thing that will accept input is out of sight!

This is a problem which is inherited from J/Link. It is caused by the fact that the Java windows are run as a separate process

(connected  by MathLink)  –  so  the  operating  system treats  the  Mathematica  FrontEnd  (which is  displaying the  notebooks)

and the Java windows as two completely independent applications that can obscure each other on the screen.

The  problem  is  only  really  relevant  to  modal  windows,  since  modeless  windows  are  meant  to  be  susceptible  to  being

overlaid by other things (c.f. palettes).

One partial  solution to this problem is to use the option ConcealNotebooks->True  on SuperGUIRunModal.  This

option will hide all open notebooks while the modal window is displayed, and make them visible when the window finally

The Super Widget Package 83

©2006 David Bailey



option will hide all open notebooks while the modal window is displayed, and make them visible when the window finally

closes.  It  should  be  used  on  the  main  window of  an  application.  If  this  option  is  used,  it  is  suggested  that  it  be  used  on

complete and tested applications. This is because if the application aborts in some way, you may be left with your notebook

hidden – possibly with unsaved changes.

Another solution to the problem of notebooks obscuring Java windows is to set up a stand-alone program.

Stand alone programs
A stand-alone  program  executes  using the  MathKernel  program  –  without  displaying  the  frontend  or  any  notebooks.  The

idea is that the entire user interaction is via Java windows. In this way, it is possible to create applications that have all the

'look and feel' of conventional applications that do not use Mathematica.

Although certain simple stand-alone programs were possible prior to version 4.00, various problems with GUIKit prevented

the serious exploitation of this feature. One appeal of a stand alone program is that the end user need not be distracted by the

presence of Mathematica  (and there is no problem of a  notebook obscuring the Java window). Indeed,  the end user might

not even be aware that Mathematica was being used in the calculation at all.

It is possible to start a kernel-only Mathematica session that reads and executes a .m file (not a notebook) and never displays

a window of any kind. Thus, if the .m file contains code to display a super widget this will operate  in a totally uncluttered

fashion. Furthermore, the program can be developed and debugged from within a Mathematica notebook, and written to the

.m file using the AutoGeneratedPackage facility. 

"c:\program files\wolfram research\mathematica\5.1\Mathkernel" -mathlink -initfile test1.m 

The -mathlink option suppresses even the kernel window from showing, so you may wish to omit this option while testing.

If you anticipate running your program in this way, it is important not to use any features that require the FrontEnd.

See the next section for a more convenient way to start applications using the kernel.

Creating programs that start when you double-click their 

data files
Although it is still possible to start the MathKernel directly to run such programs, as of version 6.24,  there is a much more

elegant option.  Think for a moment of a typical Windows application,  such as Word for Windows (or Libre Office, if you

prefer).  Such  applications  can  be  started  by  double-clicking  on  one  of  their  data  files  (on  the  desktop,  in  Explorer,  or  in

certain other contexts). This feature is actually very useful, and using the SuperWidgetPackage, this is possible for Mathemat-

ica applications.

To  use  this  feature,  you  first  need  to  select  an  unused  file  suffix  to  refer  to  your  kind  of  data.  Take  great  care  to  avoid

commony used suffices, particularly those in use on your machine. It may be worth GOOGLEing your suffix to make sure it

is  not  already in  use.  There  is  no restriction  to  3-character  suffixes, and  longer  ones  are  more likely to  be  unique.  As  an

example,  suppose  your  program  dealt  with astronomical  data,  you  might  decide  to  let  your  data  files  end  with the  suffix

.STAR.

Clearly,  when you  start  your  Mathematica  application  from an  icon,  neither  Mathematica,  nor  your  application  will  nor-

mally be active, so, just as with other Windows applications,  this information has to be enetered ahead of time, and is then

stored in the Windows registry for future use. To perform this task, execute the following function call:

84 The Super Widget Package

©2006 David Bailey



InstallÒMathLauncherÒApplication@"c:\\prog\\StarCalculator.m",
".star", "StellarDataFile",

"Stellar data file",

"c:\\\Data\\stellar_data.ico",

"SplashScreen" −> "c:\\Data\\SplashStarCalculator.jpg",

"UseFrontEnd" → FalseD;

è   This  function only needs to be  executed once to  make the necessary file  associations,  but it  can be executed  more than

once, without causing any problems, so you may want to simply execute it each time the application is run.

è  An application can be associated with more than one kind of data – simply call this function once for each file suffix you

need to register.

è  The data within the file can be text or binary, as required.

è   Setting  "UseFrontEnd"  Ø  True,  will,  of  course,  open  the  application  in  the  front  end.  This  is  not  normally  useful  for

finished applications, but it may be useful for development, or for other applications.

è   The  splash screen is  vital  because  your user  needs  this for  visual feedback  that  his data  is  being opened  (otherwise,  he

may click  again).  It  normally appears  very quickly,  before  the  actual  loading  of  Mathematica,  which may impose  a  delay

before your program can start working. If you set this argument to Null, the SWP will use an amusing image instead!

è  Argument 4 is used as a tooltip if the user hovers over the icon for a .STAR data file.

è   When  your  application  is  started  from a  data  file,  the  full  pathname of  that  file  will  be  placed  in  the  Global  variable,

MathLauncherSuppliedOpen. If ValueQ[MathLauncherSuppliedOpen] returns False, the application was started convention-

aly. The path will include the file suffix, so this can be tested if the application can accept several types of data:

If@ToUpperCase@FileExtension@MathLauncherSuppliedOpenDD == ".STAR", doSomething@DD;

è  Note that you can also create an association to an extra data type – say .STARAPP – which can be used to create an icon

on  the  desktop  that  just  starts  your  application  with no  actual  data  (the  data  file  can  contain  anything).  In  this  case,  your

application will examine the data file name, and determine that the file extension is .STARAPP, and not open it. You should

use an icon for such a file type that suggests your application as a whole.

è  Some windows applications,  such as word processors,  allow more than one data file to be open at once. If your applica-

tion is complex enough for this to be useful to you, and you are using the SWP for your GUI, you can proceed as follows:

Supply a definition for the function SuperWidgetPackage`MathLauncherÒOpen[file_] , and supply a file name to the follow-

ing function:

SetÒCommandÒFile@commandFileD

The file will not normally exist, but should be writable – it is required internally by the SWP. Using this feature, subsequent

files that are opened while your application is active, will result in a call to your supplied open function at a time when your

GUI is otherwise idle.

Utility functions 

CloseÒFrame@vD Closes the window whose frame Hor dialog windowL is associated

with v or which contains a super widget associated with v.

The Super Widget Package 85

©2006 David Bailey



ColorÒChooserÒDialog@D Displays a dialog to select a colour. Returns an RGBColor value,

or Null if nothing was selected.

ColourÒChooserÒDialog@D Synonym for ColorÒChooserÒDialog.

DefineÒSuperÒWidget@
widget�widgetsD

Define a new super widget Hin terms of one or more built-

in super widgets or GUIKit widgetsL.

FileÒOpenÒDialog@D Displays a file-open dialog,

and returns the file selected Has a stringL or Null.

FileÒOpenÒDialog@strD Displays a file-open dialog labelled by the specified string,

and returns the file selected Has a stringL or Null.

FileÒSaveÒDialog@D Displays a file-save dialog,

and returns the file selected Has a stringL or Null.

FileÒSaveÒDialog@strD Displays a file-save dialog labelled by the specified string,

and returns the file selected Has a stringL or Null.

GetÒScreenÒSize@D Returns the width and height of the screen in pixels as a 2-

element list.

GetSnapshots@D Returns a list of snapshots recorded

since SetSnapshotMode@TrueD was called.

GetURL@url−nameD Copies the data at the given URL into a temporary file,

which is returned as the result. If the operation fails for any reason,

$Failed is returned.

HTTPÒPost@address,
88name1,value1< …<D

Performs an HTTP POST operation Hequivalent to an HTML formL

to the given URL. The second argument should be a list of 2-

element sub- lists of the form 8name,value<. If

the operation fails $Failed is returned,

otherwise the response by the website is returned as a string.

ImageÒBoxes@boxesD This does not evaluate directly,

but is used to wrap boxes Has made by ToBoxesL

being sent to super widgets that can take images.

ImageÒExpression@expr,formD This does not evaluate directly,

but is used to wrap an expression Hsuch as Sqrt@XDL to be converted

to an image in the specified form Hdefault StandardFormL

and sent to super widgets that can take images.

ImageÒFile@v,optsD This does not evaluate directly,

but is used to wrap the path-name of a file containing

an image to be sent to super widgets that can take images.

ImageÒString@v,optsD This does not evaluate directly,

but is used to wrap strings Has made by ExportStringL

being sent to super widgets that can take images.

IntervalÒTimer@secs,funcD IntervalÒTimer@secs,funcD –Initiates a one-

shot timer that calls func@D after the given number of seconds

Hwhich need not be integerL. Note that the function can

call IntervalÒTimer again to create a HsafeL repeating timer.

86 The Super Widget Package

©2006 David Bailey



JavaÒConsoleÒPrint@argsD Prints arguments on the Java console – useful to debug GUI

applications that use concealed notebooks or are stand-alone.

JavaÒWidget@vD Returns the Java object Hready for use with JêLinkL

corresponding to the widget with control variable, v.

LiveGraphics3DApplet@vD If v is the associated variable for a LiveGraphics3D super widget,

this will return the raw applet so that JêLink calls can be made to it.

MessageÒBeep@D Generates a beep via Java.

MouseÒButtonÒInfo@vD Returns additional information about a mouse

action performed in a SuperWidgetGraphicsPanel. The

variable v should be the control variable for the

whole SuperWidgetGraphicsPanel for mouse moves

Hwhich are handled on a per- panel basisL or the control variable

of the relevant GraphicsÒRegion. This function is not relevant in

the case of drag operations. The information is returned as a list.

MouseÒPosition@vD Returns the position of the mouse in the

GraphicsÒRegion with control variable v. The coordinates

are in the coordinate system of the whole graphics area,

but if the mouse is not within the given graphics area,

this function returns 8Intermediate,Intermediate<.

OpenÒSuperWidgetÒLog@D Opens an extra notebook to contain assorted logging

information associated with the SuperWidgetPackage –

mainly intended for internal debugging of the SWP.

SetSnapshotMode@modeD Argument mode can be True or False. Sets a mode to tell

the system to record a snapshot of a window whenever it

is closed. These snapshots HGraphics objectsL are returned

as a list by calling GetSnapshots@D. This function can be

used before or during the time that a window is displayed.

SetÒWizardÒButtonÒState@v,
button−name,page−no,TrueêFalseD

Enablesêdisables the given button on a particular page

of a wizard that has been created with control variable

v. The button names are strings and are case-insensitive.

SetÒEnabledÒStatus@
v,TrueêFalseD

Enablesêdisables the super widget with associated variable v. This

can be called before the relevant super widget has been created,

in which case it sets its initial state,

or it may be called while the super widget is live, to change its state.

SetÒLabelÒContents@v,valueD Changes the value of the label

with control variable v to the given value,

which may be text or image. However, this function cannot

convert a text label into an image label or vice-versa.

SetÒMouseÒMode@v,gv,modeD Changes the MouseÒMode setting for the

GraphicsÒRegion with control variable gv associated with

the SuperWidgetGraphicsPanel with control variable v.

SetÒVariableÒOptions@v,optsD This can be used to associate options with the

variable v. These options are used when a super widget is

subsequently created with v as its associated variable. This

feature can help to avoid clutter in super widget declarations.

The Super Widget Package 87

©2006 David Bailey



ShowMessageBox@
message,title,button−listD

This is a convenience function to display a text message in a

modal dialog box with a title and a number of buttons supplied

as a list of strings. The box closes when a button is pressed,

and it returns the number of the button pressed.

UsingÒPlayerPro@D Returns True if the program is running under

Mathematica PlayerPro. This function can be useful

to avoid executing code that will not work under

PlayerPro Hsuch as using Get on unencrypted filesL.

KernelÒOnlyÒMode@D Returns True if the program was started from MathKernel.exe rather

than from the frontend. By starting a program from MathKernel,

it is possible to create a GUI application in which only Java

windows are visible. This is ideal for applications that will

be used by people uninterested in Mathematica as such.

SuperWidgetPackagePath@D Returns the full path name of the directory containing the

SuperWidgetPackage. This is mainly useful to calculate the path

of the various files contained in the ExampleFiles directory.

UpdateWidgetValue@v,optsD If v is associated with a super widget that displays its value,

the widget will be updated to reflect any

change in the value of v performed by the program. The

ChangeFunction is not called in this situation to avoid a

possible infinite loop. Use the option Use ReCalibrate->

True to force the re-calibration of a SuperWidgetGraphicsPanel.

UpdateÒGraphics@
v,graphics,optsD

This function is now obsolete

Larger examples
The examples in this guide have been mostly very small. A collection of rather larger examples is available at http://www.d-

baileyconsultancy.co.uk/swp_examples/swp_examples.html

If  you feel  you have  constructed  an  interesting GUI  application  using the  Super  Widget  Package,  and  would  like  to  con-

tribute it to this collection, please contact me.

88 The Super Widget Package

©2006 David Bailey


