The Super Widget Package 1

The Super Widget Package

Creating serious GUI interfaces!

Introduction to the package

The Super Widget Package (SWP) provides a very easy-to-use mechanism to unleash the power to create Graphical User
Interfaces (GUI's) via J/Link. It was originally based on the GUIKit, although since version 4.00 it no longer relies on that
technology. It enables you to construct beautiful GUI interfaces to your Mathematica programs with the absolute minimum
of effort.

The GUIK:it is very powerful, in that it gives you access to the entire power of the Java graphical user interface. However, it
is essentially a low level tool. It would take a lot of work to construct a serious Mathematica GUI application using GUIKit
(or J/Link), and a lot of that work would be highly repetitious. It is important to realise that most of the pieces of example
code in the GUIKit help information are incomplete, in that they are not linked up with any Mathematica code — you would
need to add various BindEvent structures, which can quickly become quite complicated. The super widgets take all the
typical component tasks of creating a GUI — such as displaying a variable in an editable box — and package them as neatly as
possible.

The main design considerations for the Super Widget Package are:
e Extreme ease of use — I want even beginner Mathematica users to have access to GUI interfaces.

e Very traditional Mathematica syntax — e.g. no string option names are used, because you can't look them up with '?".
Likewise, colours are specified in the traditional way — e.g. using RGBColor.

o Absolutely no knowledge of Java should be required, except in order to use a few specialised advanced features.
e A very compact GUI notation.

The Super Widget Package is tested using Mathematica 6.0, 7.0, and will be upgraded as necessary to support future
versions of Mathematica. Support for 5.2 was dropped at version 4.50, please contact the author if this is a problem.

Changes introduced at version 4.00

The SWP used to be based on the GUIKit. SWP code was translated into equivalent GUIKit code, plus some J/Link code
and compiled Java. As the SWP progressed, more and more of its functions were performed by Java code — bypassing the
GUIKit. At version 4.00 the GUIKit is no-longer used by the SWP. The main consequence of this is that GUI applications
operate considerably more efficiently. This change has also opened the way to much further development which would have
been difficult or impossible while using the GUIKit. Unfortunately, users should note that it is no-longer possible to mix
GUIKit widgets with SWP code. Although this was possible with earlier versions, I have not heard of anybody actually
using this facility.

These changes have also made it much easier to extend the SWP in new directions — possibly as part of projects with
customers.

©2006 David Bailey

2 The Super Widget Package

Getting started with the Super Widget Package

Installing the package

The SWP is supplied as a ZIP file containing all the files required in their appropriate directories.. It is vital that this direc-
tory structure is preserved. Copy the file either to the directory specified by $BaseDirectory, or $UserBaseDirectory (as a
general rule, use the former if you are the sole user of the computer, use the latter if several people log on to your machine).
Do not use the Mathematica directory itself, as was recommended in previous SWP releases, and ensure that you remove
any previous version of the SWP located there. Unzip the file SuperWidgetPackage.ZIP using a tool that preserves the
directory structure and handles long names correctly, e.g. PKZIP(R) Version 2.50, or WinZip(R). Never add or remove
anything from the SuperWidgetPackage directory or any of its subdirectories, as this can disturb the operation of the pack-

age.

You can access the help by opening the Documentation Centre, and clicking in the "Installed Addons" link (bottom right of
the window).

The examples in this guide are mostly very small — designed to illustrate a single point. A collection of rather larger exam-
ples is available at http://www.dbaileyconsultancy.co.uk/swp_examples/swp_examples.html. You are recommended to study
these examples to understand the use of the SWP in a more realistic context.

Loading the package
The SWP may be loaded thus:

Needs ["SuperWidgetPackage "]
Loading this package automatically loads J/Link.
This checks the SWP version number.

SuperWidgetVersion|[]

6.24

Simple use
Here is a very trivial SWP example:
Needs ["SuperWidgetPackage "]

{{"Hello World from"},
"The SWP!"} // SuperGUIRunModal

Alternatively, here is a very slightly more complicated example that looks a lot more attractive because the text and the
button are laid out sensibly:

Needs ["SuperWidgetPackage "]

©2006 David Bailey

The Super Widget Package 3

{T10,
{90, "Hello World from", 9o},
910,
{4o, "The sSwWP!", 9o},
910,

{10, SuperWidgetButton[Null, "OK", 1], 9o},
910} // SuperGUIRunModal

Hello Warld fram

The SWFI

Special support for versions 5 and 6

Under versions of Mathematica prior to 6, graphics functions such as P1lot created a visible plot as a side-effect of their
operations, while returning a graphics structure as their formal result. This structure could be displayed subsequently using
the Show command. Under version 6, graphics does not rely on side-effects — a graphics structure is displayed as such by
the frontend. Although this manual is mainly concerned with GUI graphics, in a few places the function V6. Show is used to
smooth over these differences. V6. Show is defined in the Super Widget Package, but is really only useful in the context of
this manual.

Some basic GUI concepts

This section contains a brief overview of GUI terminology. While this user-guide avoids jargon where possible, various
terms with a particular meaning in this context are underlined as they are defined, and will be useful in what follows.

A program is said to have a Graphical User Interface (GUI) if it communicates with the user via a windowed interface so
that the user fills data into boxes, and uses buttons, menus, etc. Although the Mathematica front end is obviously a GUI
application itself, programs written in Mathematica code have traditionally not been able to offer a full GUI interface to
their users.

A typical GUI window contains many individual components — such as menus, buttons, data-entry boxes, icons (small
images), etc. Each of these entities is known as a widget. This terminology is traditional in the Unix world, however Win-
dows programmers typically refer to widgets as 'controls'.

Using the GUIKit, it is possible to assemble collections of widget definitions, together with some layout information to
create complete windows, which are displayed using the J/Link Java interface. A complete GUI application may consist of
one or more windows, which may be displayed simultaneously, or at different times as the program executes.

GUIKit widget definitions can become quite complicated by the time they are actually ready to use. For example, if you
look up the "TextField" widget in the GUIKit help it looks fairly simple to code, but does not actually transmit any user
input back to the Mathematica program without considerable additional complications! This is partly because the GUIKit

©2006 David Bailey

4 The Super Widget Package

reflects the underlying Java classes, which require a Java program to make them do anything useful.

The SWP enables GUI's to be built using super widgets, which are very much easier to construct than GUIKit widgets, and
also offer considerable extra functionality. In what follows, the SWP will be explained with very little reference to the
underlying Java or J/Link — the technologies that underlie the SWP.

GUI windows can be either modal or modeless. A modal window takes control when it is displayed (the program can be
thought of as entering a different mode while the window is visible) and other windows in the same application are rendered
temporarily inactive. If you alter a notebook and then try to close it without saving it you will see an example of a modal
window — you have to press one of its buttons before you can proceed. Conversely, the Mathematica palettes are good
examples of modeless windows. A palette can sit about for as long as you like, ready to use when required. When you create
a modal window, the window (if any) that 'caused' the event (say by pressing a button) will be disabled for the life-time of
the new window. This means that its widgets will not respond and that it cannot overlay the new window. This is, of course
exactly what is required by a modal window, because it must be attended to before the program can proceed. From a
programming point of view, when you create a modal window, you pass control to that window, and you only gain control
when the window closes. This means that a function that creates a modal window can return a result.

Widgets and menu items are not always usable. For example, there is no point in activating a file-save widget if there is
nothing to save! While it would be possible to simply ignore such 'user mistakes' — or even generate an error message — this
is not very user-friendly. You must anticipate that your user will explore your program, clicking all over the place to see
what happens. It is for this reason, that most GUI applications disable widgets or menu options when they can't currently be
used. This is also sometimes known as 'greying out', because the relevant item is rendered in a faded fashion, and does
nothing if clicked.

All the individual widgets are stored in one big widget, which represents the window itself — think of it as a widget box.
There are two possibilities — a frame window or a dialog window. Traditionally, dialog windows tend to be used for modal
interactions, but either window can be modal or modeless. The dialog window is actually rather less flexible because it
cannot have a menu, and cannot be minimised or maximised. However, if you are putting up a simple query or information
box, maximisation and/or minimisation are inappropriate, and a dialog box looks better.

If you look at a typical GUI window — such as a notebook, you will see that it contains two active points. There will be a
mouse_cursor, which will obviously move as the mouse moves, and the so-called caret — a vertical bar which indicates the
point at which keyboard input will appear. The place to which keyboard data will be sent is said to have input focus. The
input focus can be moved from widget to widget by clicking with the mouse (but not by mere mouse movements) — thus it is
normal to click into an input field in order to adjust its value. The input focus can also be moved using the key. It is
instructive to try this. You will see that the input focus cycles round the various widgets (but not all can accept input focus).
In particular, the input focus can be moved to a button. In this state the button is emphasized in appearance, and can be
'pressed' by using the or [reT] keys.

When constructing a GUI interface, it is important to make it look as much like other simple GUI applications as possible. A
lot of the value of a GUI interface is that a user can guess how a program will behave, using his or her experience with other
applications. Thus, for example, the file/open/save/print/exit menu in the left-most position is very traditional, nobody will
thank you for putting these menu items in another location! Traditional GUI's also frequently supply several ways of doing
the same operation. For example, it may be possible to specify a file/save operation via the menus or using the toolbar. This
makes sense because people vary greatly in the ways in which they prefer to interact with a GUI.

The more you critically examine a typical GUI, the more complexity you will find. Fortunately, most of this functionality is
catered for by the default settings of the super widgets, and the job is less daunting than it might at first appear.

©2006 David Bailey

The Super Widget Package 5

Using Simple Super Widgets

Introduction

The super widgets are all completely inert (analogous to, say, the RowBox) until passed to the SuperGUIRun or
SuperGUIRunModal functions. Use SuperGUIRunModal unless you specifically require the modeless properties of
SuperGUIRun. In this case, please read the section on the restrictions that apply to modeless windows.

Every super widget is set up with attribute HoldFirst. The first argument of each super widget must be the name of a
Mathematica variable, or (as of version 4.70) an simply indexed array - such as x[[5]]. This variable, known as the associ-
ated variable is used to identify the widget and to hold the data represented by the super widget. Even widgets that do not
have associated data, still require an associated variable as the first argument. It is extremely important that a different
associated variable is used for each super widget. Sometimes the associated variable is not useful, and in these cases it can
be coded as Null, and the SWP will invent a suitable (unique) replacement.

Most super widgets can take a variety of options. These options are traditional symbolic options, and can be examined and
adjusted using Options and SetOptions.

Tlp ! Many super widget arguments or options are the names of functions. These functions are typically called

when some action is required — say in response to a button. Since most of these functions need to be defined with the
HoldFirst attribute, the SWP does not accept pure functions in these places. There is a syntax available to define a pure
function with attributes, but this is quite clumsy.

SuperGUIRun and SuperGUIRunModal

SuperGUIRun [widgets, opts] Displays one or more super widgets as a modeless window, and
returns to the program immediately. Modeless windows are excep-
tional — use SuperGUIRunModal is in doubt.

SuperGUIRunModal [widgets, opts] Displays one or more super widgets as a modal window, and returns
when the window is ultimately closed. The return value is Null, or the
button number or Return.Action that closed the window (see below).

Functions to display super widgets

Both these functions take a widgets argument. This can be a single super widget, or a list (usually nested) of super widgets
mixed with layout and ancillary information. Alternatively, the widgets argument may consist of one SuperWid-
getFrame or SuperWidgetDialog (which represent whole windows — see below), each of which contains an embed-
ded list of the super widgets inside them.

©2006 David Bailey

6 The Super Widget Package

ConcealNotebooks Option for SuperGUIRunModal. Hides the notebooks while the GUI
is on display. Read the notes about this option before use.

On.Display Option for SuperGUIRunModal only. Specifies a function with no
arguments that is to be called immediately after the GUI has been
displayed. Note that this option is not available for SuperGUIRun —
where it would serve no purpose.

Options for SuperGUIRun and SuperGUIRunModal

SuperGUIRunModal can take the ConcealNotebooks option. This hides the currently open notebooks before
displaying the window (so the notebooks cannot obscure the window) and restores the notebooks afterwards. This option is
best used in fully debugged applications, as there is a chance that if your window hangs, you will have difficulty recovering
your notebook (assuming it contained unsaved material).

It is generally much safer and easier to use SuperGUIRunModal rather than SuperGUIRun, unless you genuinely want
to continue doing something while the GUI is on display. If you need to perform a fairly quick task after the GUI is dis-
played, it is recommended that you use the On.Display option to supply a startup function. The GUI will not become
fully responsive until after any startup function has completed.

SuperWidgetintegerBox, SuperWidgetRealBox, SuperWidgetStringBox

SuperWidgetIntegerBox [v, opts] Displays the decimal integer in the associated variable v in a text edit
box. As the user edits the number, the value of v changes.

SuperWidgetRealBox [v, opts] Displays the machine real in the associated variable v in a text edit
box. As the user edits the number, the value of v changes.

SuperWidgetDecimalBox [Displays the machine real in the associated variable v in a text edit

v,ndigs, opts] box, but with a fixed number — ndigs — of digits after the decimal
point. Exponent form is not permitted. As the user edits the number,
the value of v changes.

SuperWidgetStringBox [v, opts] Displays the string in associated variable v in a text edit box. As the
user edits the string, the value of v changes.

Basic data input widgets

©2006 David Bailey

The Super Widget Package 7

ChangeFunction 1-Argument function to call with the associated variable each time.
the user alters the data

Character.Width Specifies the number of character positions used for the box.

Editable Set False to create a data box that can only be modified by code — not
by using the mouse/keyboard.

Select.All Set True to cause the entire box to be initially selected — this means
that typing into the field will cause the selection to be deleted.

Tool.Tip Supplies a tool-tip (helpful string) to be displayed when the mouse
enters the box.

Return.Action Action to be taken if the user
presses the or [fer] while the widget has
focus. Set to an integer to cause the window to close with that as the
return value, or supply the name of a function to be called
with the widget associated variable as argument. Enabling
data input windows to close in this way is very convenient
because the user's hands are already on the keyboard.

Stretch Default {False, False} — determines if
the widget can expand in the horizontal and vertical
directions to fill space. For one—line controls of this sort,
it can be useful to specify {True, False},
but specifying vertical stretch is not useful.

Options for the basic data input super widgets

These four super widgets create an edit box specialised to accept data of a particular kind. They take an associated variable
which should start off either with no value, or with an integer/real/string value as appropriate. The widget will use the value
of v for initialisation, or will start off blank. As the user changes the value, the associated variable, v will update, and the
option ChangeFunction can be used to execute code each time the variable is updated. Note that since the value is
automatically transmitted to the associated variable, the ChangeFunction option is typically only required for more
complex applications.

Note that there are two super widgets for real numbers. SuperWidgetRealBox is useful for regular real numbers, and
can handle exponents, whereas SuperWidgetDecimalBox handles reals that have a specific maximum number of
decimal digits — such as currency. Numbers are right-aligned in the SuperWidgetDecimalBox.

Remember to load the SWP package before executing the following example. First, we turn on snapshot mode (explained in
detail later) so that we can record an image (typically a little larger than the live GUI) of the resulting window:

Needs ["SuperWidgetPackage "]

SetSnapshotMode [True]

The variable x will get passed to the function f each time the user changes the number. A complete program might contain
many SuperWidgetRealBox widgets, so it is useful to give f the attribute HoldFirst so that it is possible to deter-
mine which widget changed as well as its value.

©2006 David Bailey

8 The Super Widget Package

SetAttributes[f, HoldFirst];

f[a] := Print[HoldForm[a], "=", a];

x = 100.5;

{SuperWidgetRealBox [x, ChangeFunction -» f]} // SuperGUIRunModal

x=100.54

x=100.544

GetSnapshots[] // V6.Show

Note the Return.Action option. You can give your user a better experience if you use this option. The data supplied by
this option is exactly analogous to the third argument of SuperWidgetButton. It enables you to make the or
keys mimic the action of a button — typically the button which marks successful completion of the data entry process. If your
window contains multiple data-entry super widgets, it is, of course, sensible to use the same value for the Return.Ac-
tion option in each case.

For more advanced manipulation of basic data input widgets see the section "Dynamic manipulation of basic data input
widget properties".

Layout

The layout mechanism is derived almost completely from the GUIKit, on which the SWP used to be based. Super widgets
are combined by using a list. A simple list of super widgets (or indeed GUIKit widgets) are displayed vertically. For
example:

Needs ["SuperWidgetPackage "]
{"AAA", "BBB", "CCC"} // SuperGUIRunModal

GetSnapshots[] // Show;

Note that this example uses the fact that simple text strings are converted to SuperWidgetLabel objects and displayed
as read-only text.

If you embed super widgets in nested lists, the layout flips between vertical and horizontal. For example:

{"ARA", {"BBB", "CCC"}} // SuperGUIRunModal

©2006 David Bailey

The Super Widget Package 9

GetSnapshots[] // Show;

Within the lists, super widgets are spaced out using 91, (the size of the gap, 10 is arbitrary, but seems to produce good
results in most cases — use a bigger or smaller value as required). The spacing will be horizontal or vertical according to the
list nesting. While this notation may seem rather cryptic, real GUI's often require a lot of spacing to look right, and the
standard GUIKit notation — WidgetSpace [10], (which will also work) can become extremely cumbersome.

Tlp I | Your window will look more attractive if you use one, or at most two, different fixed-width space elements.

You may achieve this by assigning a variable — such as sp — thus:
sp = T1o
Using this variable where space is required will ensure consistency and make it easy to adjust the spacing later, if required.

The notation 9, has a special meaning, it corresponds to the GUIKit WidgetFil1l[] and supplies filling space as
required. Thus, you get right justification by filling from the left:

{" KEXXXKXHXXXKXX XXX XKKXXKKXXKKXXKXXKXKXXXXKX" , {[p, "something"}} // SuperGUIRunModal

GetSnapshots[] // Show;

R B B B D M BN

samething

It is particularly useful to fill from both the left and the right to produce a centred widget. This is well illustrated using a
button super widget that will be described in full later:

{910, {T10, "This is a small message box", 910}, Y10,
{1y, SuperWidgetButton[Null, "OK", 1], 90}, 910} // SuperGUIRunModal

©2006 David Bailey

10 The Super Widget Package

GetSnapshots[] // Show;

This is a small message box

Note that simple message boxes like this are more easily produced using the ShowMe ssageBox function, described later.

Another useful layout feature is the GUIKit WidgetAlign[], which can be represented more neatly using [me]. For
example:

{{"aa", , "bbbbbbbbbbbbbbbbbbb"}, {"aaaaaaaa", , "bb"}, {"aaaaaaaaaaaaaa", , "bb"}
} // SuperGUIRunModal

GetSnapshots[] // Show;

bbhbhbbhbbbbhbbhbhb
bb

aaaaaaasazaaaa hbb

All the 'b' strings have been forced to line up because of the tabs.

By default, some super widget types are stretchable (e.g. graphics panels), while others are not. The option Stretch can
be used to override this default as required. For example, Stretch->{True,False} indicates that the widget in
question can be stretched horizontally but not vertically. Note that not all widgets can be meaningfully stretched.

More complex layouts are possible using SuperWidgetPanel, SuperWidgetLabelledBox, and SuperWid-
getTabPanel

SuperWidgetHorizontalSeparator / SuperWidgetVerticalSeparator

These two super widgets can be used to 'score' a line into a window in such a way that they act as a separator. These should
not be used on windows with a white background.

SuperWidgetHorizontalSeparator [Displays a horizontal scored line that acts

v, opts] as a separator. The variable v is not currently used.
SuperWidgetVerticalSeparator | Displays a vertical scored line that acts as
v,opts] a separator. The variable v is not currently used.

The separator super widgets

©2006 David Bailey

The Super Widget Package

11

SuperWidgetHorizontalSlider / SuperWidgetVerticalSlider

SuperWidgetHorizontalSlider |
v,min,max, opts]

SuperWidgetVerticalSlider |
v, min, max, opts]

Displays a horizontal slider widget to represent real
values between min and max. If v has an initial value,

it is used to set the slider initially,

otherwise it starts at the half—way point. The

associated variable v is updated when the slider is moved,
and if the ChangeFunction option is used, the supplied,
function is called with the v as argument.

Displays a vertical slider widget.

The Slider super widgets

ChangeFunction

Slider.Labels

Snap.To.Ticks

Tick.Ratio

Tool.Tip

Zoom.Menu

1-Argument function to call with the associated variable each time.
the user alters the data

Supplies a list of label values to be used to annotate a slider. Tick
marks are also added if this option is used.

Set to True to cause the slider to snap to the nearest tick position
when the mouse is released. Also causes the slider to delay reporting
until the mouse button is released.

Ratio of major to minor tick spacing — default 5. Set this value to 1 to
effectively remove the minor ticks

Supplies a tool-tip (helpful string) to be displayed when the mouse
enters the box.
The displayed tool tip is concatenated with the current value.

When this option is set to True,

the slider can be made to zoom using a right

mouse click (or equivalent on non—Windows platforms)
to bring up the zoom menu. This option generates its
own labels — do not use with the Slider.Labels option.

Options for the Slider super widgets

The slider super widgets take a Real-valued associated variable followed by the min and max values. As the slider is moved,
the variable updates, and if the ChangeFunction option has been used, that is also called:

Needs ["SuperWidgetPackage "]

©2006 David Bailey

12

The Super Widget Package

SetAttributes[foo, HoldFirst];

foo[x] :=Print[Unevaluated[x], "=", x];

y=0.4;

SuperWidgetHorizontalSlider [y, 0, 1.0, ChangeFunction -» foo] // SuperGUIRunModal;

y

v=0.4301
v=0.4355
y=0.4462
y=0.457

v=0.4462
y=0.4409
v=0.4301
v=0.4247
y=0.4194
v=0.4086
v=0.4032
v=0.4032

0.4032

GetSnapshots[] // Show;

The Zoom.Menu option enables you to use sliders in a variety of interesting ways. Here is a very trivial example in which it

is used to 'manually’ find the root of an equation:

©2006 David Bailey

The Super Widget Package 13

Clear[f];
labelText[] :=
(
Image.Expression[StyleForm[SequenceForm["x= ", NumberForm[x.val, {10, 10}],
", Sin[x]= ", NumberForm[Sin[x.val], {10, 10}]], FontSize -» 18]]

f[x] := Set.Label.Contents[xxx, labelText[]]’
x.val = 3.0;
{
Q10
{90, SuperWidgetLabel [xxx,
labelText[], Label.Alignment -» Center, Pixel . Width -» 450], 9o},
Y10,
{90, SuperWidgetHorizontalSlider [
x.val, 3.0, 3.5, ChangeFunction » £, Zoom.Menu - True], 9o},
T10
} // SuperGUIRunModal

By moving the slider until the value of Sin[x] is closest to zero, and then right clicking on the slider to zoom it in, it is
possible to home in on the root of Sin[x]==0 (i.e.) with steadily increasing accuracy. The image shows the display
some way into this process. Although there is not much point in using this method for root finding, zoomable sliders can be
very useful in other situations in which the location of interest is less easily characterised — for example, finding the value of
a parameter that just makes a fractal disconnected.

Note that in the above example, the text is output as an image because the numbers are displayed in exponent form as the
zoom progresses. This image is placed in a SuperWidgetLabel with an explicit Pixel .Width to allow for the
numbers to occupy a little more space if necessary.

SuperWidgetButton
SuperWidgetButton [Displays a button where name can be either a string or an image
v,name, fn, opts] construct. When pressed, if fn is an integer, the button closes the

whole window and returns that integer as an argument, otherwise s
call is made to fn[v].

The Button super widget

©2006 David Bailey

14 The Super Widget Package

Press.Function Supplies a function to be called when the button is depressed (the
normal action occurs as it is released again). Useful in push and hold
applications.

Tool .Tip Supplies a string to be displayed as a tool tip when the mouse enters.
the widget

Options for the Button super widget

This creates a button. The first argument is the associated variable (or Nul1l), used to identify the widget, and the second is
the text (or image) of the button. This text string should contain only ordinary characters — not special Mathematica charac-
ters which cannot be displayed in Java, however, it is easy to convert Mathematica expressions as images, so this is no real
limitation. The final argument can be either an integer or the name of a function. Using an integer, the button will close the
whole window if it is pressed, and SuperGUIRunModal will return this integer as its result. This can be very convenient
in situations in which a window can be dismissed by one of several buttons. For example:

Needs ["SuperWidgetPackage "]

SuperWidgetFrame [frl, {

WidgetSpace[10],

{WidgetSpace[10], SuperWidgetLabel[ll,

"Are you sure you want to reformat your disk?"], WidgetSpace[10]},
WidgetSpace[10],
{WidgetFill[], SuperWidgetButton[bbl, "Ok", 1],
SuperWidgetButton[bb2, "Cancel", 2], WidgetFill[]},
WidgetSpace[10]
}
1 // SuperGUIRunModal

GetSnapshots[] // Show;

Are you sure you want to reformat your disk?

| ok || Cancel |

This will return 1 if the 'Ok’ button is pressed, 2 if the 'Cancel' button is pressed, and Null if the window is closed in some
other way.

Simple message boxes can be shown using an even simpler method using the function ShowMe ssageBox. For example:

ShowMessageBox ["Are you sure you want to reformat your hard disk?",
"Careful!", {"OK", "Cancel"}]

©2006 David Bailey

The Super Widget Package 15

You can specify any number of buttons, and these produce return values of 1,2,...

SuperWidgetFrame [frl, {

T10,
{910, SuperWidgetLabel[ll, "Are you sure you want to reformat your disk?"], Tio},
Q10
{10, SuperWidgetButton[bbl, "Ok", 1], SuperWidgetButton[bb2, "Cancel", 2], 1o},
T10
}

] // SuperGUIRunModal

The third argument to SuperWidgetButton, which determines what the button actually does is often made the same as
the Return.Action option used elsewhere in the window. This makes it possible to mimic the pressing of a button by
pressing the [reT] key. Typically you should arrange for this key to produce the same behaviour as pressing the 'OK' button.

The option Press.Function creates a button with rather different functionality. Ordinary buttons do nothing as they are
pressed — the action happens as they are released. Indeed, if you press an ordinary button with the mouse and then move the
mouse off the button before you release the key, you will release the button without performing the corresponding action.
The Press.Function is for cases where a button is to be pressed and held for the duration of a process. In this case the
function supplied to Press.Function normally initiates some action, and the normal button function terminates it. The
SWP ensures that in this case, if the button is pressed and the mouse leaves the button, the normal mouse click function is
called at that point. This ensures that such a button cannot be left stuck on.

The label of a button can also be an image (see Images) or a general HTML string (see Using HTML strings inside widgets)
to obtain more exotic effects.

Buttons may also be coloured after they have been created. This is useful to designate which button has most recently been
pressed, or for other reasons. Light colours usually look best:

Set.Button.Colour [v, colour] Sets the colour of the button with associated variable v

The colour is combined with the ordinary button image, and the default is White.

SuperWidgetLabel
SuperWidgetLabel [Displays static text or an image, specified by contents. The associated
v, contents, opts] variable may be supplied as Null, if not required.

The label super widget

©2006 David Bailey

16 The Super Widget Package

Font.Color Mathematica colour specification (e.g. RGBColor]....] for the text.
Font Font specification in the form {Name,face,size}
Label.Alignment Specifies the horizontal alignment of the label contents. Defaults

to Left, but Center or Right can be specified.

Pixel.Width Specifies the minimum width of the label in pixels — particularly
useful if the label contents may be replaced with a longer label.

Options for the label super widget

Most SuperWidgetLabels are not coded explicitly. Whenever you include a string (or an image — see below) in a list of
super widgets, this is translated into a SuperWidgetLabel before it is displayed. However, using the explicit formula-
tion it is possible to adjust their properties using options.

The super widget label is used to place fixed text strings in a GUI. The first argument — the associated variable — is not
really used at present, but it seemed more consistent to make this super widget follow the same convention as all the others.
Unlike the "label" widget (into which it resolves), the super widget uses the super widget default font (SWDF). This can be
adjusted by calling Set.Text.Font. Alternatively, the font may be set on a per-label basis by using the Font option. By
default, the SWDF is a little larger than the default Java font. The Font.Color (or Font.Colour, for UK users!)
option can be used to specify the text colour using an RGBColor object. For example:

Needs ["SuperWidgetPackage "]

SuperWidgetFrame [frl, {
T10/
{910, SuperWidgetLabel [Null, "Are you sure you want to reformat your disk?",
Font.Color -» RGBColor[1l, 0, 0], Font » {"Helvetica", "Italic", 16}], 910},
Q10
{10, SuperWidgetButton[Null, "Ok", 1], SuperWidgetButton[Null, "Cancel", 2], 1o},
T10

}
] // SuperGUIRunModal

GetSnapshots[] // Show;

Arg you sure vou want to reformat vour disk”

| Ok || Cancel |

If no special options are required, a label may be specified as a simple string. For Example:

{"This widget contains", "nothing but text"} // SuperGUIRunModal

©2006 David Bailey

The Super Widget Package 17

GetSnapshots[] // Show;

his widget contains

nathing but text

Labels can contain newline characters ("\n"). In this case multiple lines of text are displayed with left justification.

The contents of a label can be changed by calling the function Set.Label.Contents, subject to the following restric-
tions:

o A text-label cannot be converted into an image-label (or vice-versa) by calling this function.
e Multi-line text labels (i.e. where the text contains newline characters) cannot be updated.

e Labels are not re-sized to fit their new contents (since the window is already on display at this point!) so make sure that the
initial contents are large enough, or (as in the example below) that the label will be stretched by the layout rules to an
adequate size.

In this example, the change function for the slider updates a label to indicate the value change.

xxx = 50.0;
foo[x] := (
Set.Label.Contents[11l1l, ToString[x]];
)i

SuperGUIRunModal [{ SuperWidgetLabel [Null, "Pressure (PSI)", Label.Alignment -» Center],
SuperWidgetHorizontalSlider[xxx, 0., 100., ChangeFunction -» foo],
SuperWidgetLabel[11ll, ToString[xxx], Label.Alignment -» Center]

3]

GetSnapshots[] // Show

Labels can also contain HTML strings — see the section on using HTML strings inside super widgets.

©2006 David Bailey

18 The Super Widget Package

Using images

Image.File[file-name] Represents an image stored in a file. Use
a complete path name rather than a local file name.

Image.Expression [expr] Displays static text or an image, specified by contents. The
associated variable may be supplied as Null, if not required.

Image.Expression [expr, form] Represents an image of the given expression
in StandardForm. Use HoldForm if you need to
display an expression that would undergo evaluation.

Image.Boxes [boxes] Represents an image of the boxes (e.g. created by ToBoxes).

Image.Graphics [g] Represents an image consisting of a 2 or 3—
D Mathematica graphics object.

Image.String[string] Represents an image in the form of a string,
typically created by ExportString.

Image wrappers

So far the buttons and labels have all been textual. There are a number of places where super widgets can accept images as
well as strings. An image can just be a pretty image in a file, but it can also be an image of an expression — so that a button
or a label can access the full character set and expression mechanisms of Mathematica. Images can be represented in the
following ways:

e As a file, e.g. Image.File["c:\\gifs\\test.gif"]. Jpeg, PNG, and GIF files are accepted, and GIF files can even be ani-
mated!

e As an expression, e.g. Image . Expression[Sqrt[x+1]]

e As an expression in a particular form, e.g. Image .Expression[Gamma[x],TraditionalForm]

e As a box expression (typically created by ToBoxes), e.g. Image.Boxes [ToBoxes [Sqrt [x+1]1]]
e As a graphics object (typically created by Plot, Plot3D, etc.).

e As a string, as generated by ExportString,e.g. Image.String[x]

These 'functions' do not evaluate in themselves, they merely represent an image in a super widget. For example:
Needs ["SuperWidgetPackage "]
Clear[x]; SuperWidgetLabel [pp, Image-Expression[Sqrt[x*2 +1]]] // SuperGUIRunModal

Here is a more complicated example in which the value of both a text label and an image label are updated as the slider is
adjusted.

©2006 David Bailey

The Super Widget Package 19

Clear[£f];
aaa=0.0;
do.plot[] := ParametricPlot[{Cos[5 t], Sin[(1 + aaa) t]},
{t, 0, 27}, AspectRatio » Automatic, DisplayFunction -» Identity];
xxx = do.plot[];
£[_] = (
xxx = do.plot[];
Set.Label.Contents[11l1l, ToString[aaal];
UpdateWidgetValue [xxx] ;

)

{SuperWidgetGraphicsPanel [xxx],
SuperWidgetHorizontalSlider[aaa, O,

10, ChangeFunction -» £, Slider.Labels » {0, 2, 4, 6, 8, 10}],
SuperWidgetLabel[1lll, ToString[aaa] , Label.Alignment -» Center],
T10

} // SuperGUIRunModal

Using fonts

A SuperWidgetLabel can be defined to use a particular font (see above). However, it is important to realise that these
are Java fonts, not Mathematica fonts. It is usually better to set up a StyleBox object using ordinary Mathematica fonts,
and then wrap the result in Image .Boxes.

SuperWidgetComboBox
SuperWidgetComboBox [Displays a combo box using the list of strings contents. The selected
v, contents, opts] string is placed in the associated variable.

The combo box super widget

©2006 David Bailey

20 The Super Widget Package

ChangeFunction Function that is called (with the argument v) each
time the user makes a new selection or edits the selection.

Character.Width Specifies the number of character positions used for the box. This is a
minimum size — if the list contains long strings, the box may be wider.

Editable Specifies if the user can type in a value or if
he can only select from a predetermined list (default).

Return-Action Action to be taken if the user
presses the or while the widget has
focus. Set to an integer to cause the window to close with that as the
return value, or supply the name of a function to be called
with the widget associated variable as argument. Enabling
data input windows to close in this way is very convenient
because the user's hands are already on the keyboard.

Tool.Tip String to be used as a tooltip.

Options for the combo box super widget

This creates a combo-box — a small box that can drop down to display a set of alternatives (which must be strings). The first
argument is the associated variable. It is updated each time the user selects an item. Its initial value is not used. If the option
Editable->True is used, the user can also type in a value, which may or may not be on the list. The ChangeFunc:

tion option can be used to monitor the changes. The supplied function is called with the controlling variable as argument.
For example:

Needs ["SuperWidgetPackage "]

SetAttributes [myFunc, HoldFirst];
myFunc[x] := Print[Unevaluated([x], "=", x];
X=.;
SuperWidgetComboBox[x, {"Alpha", "Beta", "Gamma"},
Editable » True, ChangeFunction -» myFunc] // SuperGUIRunModal;

x
x=Beta
x=Beta
Beta

GetSnapshots[] // Show;

—omething elze

At version 3.40, the SuperWidgetComboBox acquired additional capabilities supplied by the following functions:

©2006 David Bailey

The Super Widget Package 21

ComboBox.Index [var] Returns the index of the selected item in the combobox super widget
associated with var — only useful if Editable->False.

Select.All[var] Selects all the text in the edit box of the combobox super widget
associated with var — only useful if Editable->True.

Set.ComboBox.List[var,list] Replaces the list of strings in the
combobox super widget associated with var.

Last.Focus.Time[var] Returns a representation in miliseconds of the time when
the widget associated with variable vvar last acquired focus.

Functions to manipulate combobox super widgets

The contents of combo boxes can be defined by HTML strings — which provide a way to use images in such boxes. For
convenience, the ChangeFunction of a combo box can call ComboBox.Index to determine the item selected as a number
rather than a string. This function should not be called at other times or when the Editable option has been set.

SuperWidgetCheckBox
SuperWidgetCheckBox [Displays a check box with the given description. The associated
v,description, opts] variable reflects the value as True or False.

The check box super widget

ChangeFunction Function to call (with v as argument)
each time the user changes the state of the widget.

Tool.Tip String to be used as a tooltip.

Options for the check box super widget
This creates a check box with some associated text. It is used to obtain a simple boolean value. For example:
Needs ["SuperWidgetPackage "]

vl = True;

v2 = True;
v3 = False;
v4 = True;

{T10,
SuperWidgetCheckBox[vl, "Function is continuous"],

SuperWidgetCheckBox[v2, "Function has continuous derivatives"],
SuperWidgetCheckBox[v3, "Function has poles in the complex plane"],
SuperWidgetCheckBox[v4, "Function has zeros in the complex plane"],
T10,

{10, SuperWidgetButton[Null, "OK", 1], 9o},

T10
} // SuperGUIRunModal

©2006 David Bailey

22 The Super Widget Package

GetSnapshots[] // Show;

=]

Function iz continuous:

Function has cortinuous derivatives
|:| Function has poles in the complex plane

Function haz zeroz inthe complex plane

SuperWidgetRadioButtonGroup

SuperWidgetRadioButtonGroup [Displays a group of radio buttons with names taken from the list
v, contents, opts] contents. The associated variable is an integer indicating which
button is currently pressed.

The radio button group super widget

ChangeFunction Function to call with v as argument, each time the user clicks one of
the buttons.

Options for the radio button group super widget

This creates a group of radio buttons stacked vertically. Exactly one element of this group will be 'on' at a time. The first
argument is the associated variable, which should be initialised to an integer in the range of the number of alternatives. The
second argument is a list of strings which label these alternatives. As usual, the variable is updated as the user changes the
selection. The option ChangeFunction can be used to supply a function to obtain immediate feedback:

Needs ["SuperWidgetPackage "]

SetAttributes [myFunc, HoldFirst];

myFunc[x] := Print[Unevaluated([x], "=", x];

x=2;

SuperWidgetRadioButtonGroup [x,
{"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"},
ChangeFunction -> myFunc] // SuperGUIRunModal; x

x=4

If a list of just one string is supplied, this super widget operates slightly differently. In this case the variable takes on the
values 0 and 1, depending on whether the corresponding button it on or off. However, note that by convention, it is normal

©2006 David Bailey

The Super Widget Package 23

to use a checkbox to represent this situation, since there are no mutually exclusive alternatives.

SuperWidgetProgressBar

SuperWidgetProgressBar [Displays a progress bar with values between min and max — current
v,max,min, str, opts] value in v. The str argument is a string, whose use is described in the
text.

The progress bar super widget

Tool .Tip Specifies a toop tip string for the progress bar.

Pixel.Width Specifies the width in pixels of the bar (default 150). The height of
the bar is not adjustable.

Options for the progress bar super widget

This creates a progress bar that can be updated by changing the value of the control variable and calling UpdateWidget-
Value. The string argument will be used is a call to StringForm[str,v] to generate a string to appear in the bar. Use an
empty string to create an empty bar. Here is a simple example:

v=0.;
{

{90, "Doing something", 9o},
{4y, SuperWidgetProgressBar([v, 0., 10.,
"Value: 1", Tool.Tip -> "Gibber", Pixel.Width -» 300], 9o},

T10,
{90, SuperWidgetButton[Null, "OK", 1], 1o},
T10

} // SuperGUIRun;

While[v < 10 && Active.WidgetQ[v],

v=v+1l;

UpdateWidgetValue([V] ;

Pause[1l];

1;

Close.Frame[v];

Dioing something

In this example, the 'task' whose progress is being monitored is simply simulated using Pause. When the progress bar is
complete, the entire window is removed using Close.Frame. The argument to Close.Frame could have been any
variable controlling a widget in the window, v just happens to be convenient. In this case, the window containing the

©2006 David Bailey

24 The Super Widget Package

progress bar can be closed before the task is complete, so the code checks that v is still controlling an active widget and
exits early if necessary.

More about associated variables

As you know, every super widget has an associated variable. This association has many uses. It is used to hold the data
corresponding to a super widget (where appropriate), and is passed to the ChangeFunction as an argument. If you
specify that function with HoldFirst attribute, you can identify which super widget was responsible (so that you can use
the same change function for several super widgets).

Super widget definitions can become quite cluttered, so options can be associated ahead of time with the corresponding
associated variable using the Set .Variable.Options function. This can also be convenient because, for example, the
setting for the ChangeFunction option is really associated with the program logic, rather than the GUI itself. If an
option is specified ahead of time and in the actual super widget definition, the latter is used in preference. Here is a trivial
example:

Needs ["SuperWidgetPackage "]

pl = 42.5;

Set.Variable.Options[pl, ChangeFunction - fpl];

SetAttributes[fpl, HoldFirst];

fpl[x] := Print[Unevaluated[x], "=", x];

SuperWidgetFrame[frl, {SuperWidgetRealBox[pl]}] // SuperGUIRunModal

pl=42.54

Options are actually checked at the time the corresponding super widget definition is processed. It is also possible to change
the default options for one particular type of super widget using the standard Mathematica SetOptions function:

SetOptions[SuperWidgetLabel, Font.Color -» RGBColor[1l, 0, 0]];
{{910, SuperWidgetLabel[1lll, "Some red text"], 910}} // SuperGUIRunModal

Return to default for the sake of the rest of the examples.
SetOptions [SuperWidgetLabel, Font.Color -» RGBColor [0, 0, 0]];

Associated variables also carry the enabled/disabled state of a super widget. By default, all super widgets start in their
enabled state. However, by calling Set .Enabled.Status, you can switch between the enabled and disabled states. By
calling this function on an associated variable that has yet to be used, it is possible to set the initial state of a super widget.
Ideally, your program will ensure that no part of your GUI interface is enabled if the corresponding action would be
inappropriate.

Interactive graphics

Introduction
The SuperWidgetGraphicsPanel lets you create genuinely interactive Mathematica graphics applications.

Traditional Mathematica graphics is essentially non-interactive and offers only rather crude animation possibilities. This
reflects the fact that early versions of Mathematica were created at a time when CPU performance was such that a single

©2006 David Bailey

The Super Widget Package 25

plot could take many seconds to render. The SuperWidgetGraphicsPanel displays conventional 2-D or 3-D Mathe-
matica graphics objects, such as those produced by Plot, Plot3D, etc. and offers a variety of extensions to make them
interactive and animated. In particular, 2-D graphics objects can be augmented with additional graphics primitives — Graph -
ics<Region structures — which control the interaction with the mouse. In the simplest case, a program will completely
replace the graphic (including any Graphics.Region structures) each time it needs to update the display. On a modern
(say 2GHz) machine, this generally requires about a second — depending on the size of window used. While this is fast
enough for some purposes, it is also possible to add one or more arbitrary shaped 'icons' (sometimes referred to as 'sprites')
that float on top of the main graphics and can be moved about for very little cost. For example, the corresponding points on
two curves might be represented by a pair of moving icons.

SuperWidgetGraphicsPanel | Displays graphics panel, which initially contains the plot stored in
v,opts] the control variable v.

SuperWidgetGraphicsPanel | Obsolete form, retained for compatibility. Displays graphics panel,
v,plot, opts] which initially contains plot, the given graphics object.

Interactive graphics super widget

MouseMotionFunction Supplies a function of three arguments var,x,y which is called each
time the mouse is moved. This should be used sparingly, as it is easy
to impede the motion of the mouse by excessive computation.

ResizeFunction Supplies a function of three arguments var,sx,sy which is called each
time graphics area is re-sized. The arguments sx and sy represent the
new data for ImageSize — you can use them to deduce how much
space you have to draw into. The function must refresh the graphics
with ReCalibrate->True.

Dynamic.Tool.Tip Specifies that the graphics panel will support
a tool tip whose contents are computed as a function
of the mouse position whenever they are needed. This
function of three arguments var,X,y is called when needed, and should
return a string result — see dynamic tool tips below.

Options for SuperWidgetGraphicsPanel excluding some obsolete options

Because interactive examples are inevitably a little more complicated, let us start with a display of a graph without mouse
interaction. Since we are not interested in using the mouse, the plot might as well be 3-dimensional:

Needs ["SuperWidgetPackage "]

vv = Plot3D[Sin[xy], {x, 0, 4}, {v, 0, 4},
DisplayFunction -» Identity, ImageSize -» {400, 400}];
SuperWidgetGraphicsPanel [vv] // SuperGUIRunModal

The variable vv is set up to contain the plot and also acts as the control variable. This is, of course, precisely analogous to
other super widgets such as SuperWidgetIntegerBox. The size of the resulting graphics panel (in pixels) is deter-
mined by the ImageSize option used in the command (P1ot3D in this case) used to create the graphic. Note the use of
DisplayFunction-Identity since we (presumably) don't want the plot to appear in the notebook as well as in the
GUL

At its very simplest, some interaction can, of course, be achieved by changing the graphic in response to other widgets in the
window. For example, in this example the 3-D graph changes in response to the menu:

©2006 David Bailey

26 The Super Widget Package

f.sin[] := Module[{},
vv = Plot3D[Sin[xy], {x, 0, 4},
{yv, 0, 4}, DisplayFunction -» Identity, ImageSize -» {400, 400}];
UpdateWidgetValue[vv] ;
1;
f.cos[] := Module[{},
vv = Plot3D[Cos[xvVy], {x, 0, 4},
{yv, 0, 4}, DisplayFunction -» Identity, ImageSize -» {400, 400}];
UpdateWidgetValue[vv]; (* This has no effect if
executed before GUI is launched x)
1;

fosin[];

SuperWidgetFrame [Null, {
SuperWidgetGraphicsPanel[vv]},
Menu -» {{"Function", {{"Sin", f.sin}, {"Cos", f.cos}}}},
Title -> "3-D function plotter"] // SuperGUIRunModal

Take care that each plot uses the same settings for ImageSize unless you are refreshing the plot within a ResizeFunc:
tion. In the latter case, you should set the new ImageSize to equal the size parameters passed to that function. If you set
the ImageSize to any other value, the result will be either clipped or not fill the window.

Note that SuperWidgetGraphicsPanel used to take the plot as its second argument, rather than as the value of the
control variable. This was changed for consistency, but the obsolete form has been retained for compatibility and should not
be used in new code.

Graphics regions

Because a mouse is a 2-D input device, 2-D graphics can enjoy a very high level of interactivity. This functionality is
organised around the concept of the Graphics.Region.

Graphics.Region|v, Functions as a graphics primitive in 2-D graphics prepared for GUI

{{x1,vy1l}, {x2,y2},...},0pts] display. The variable v is the control variable for the region. The
second argument is a list of the vertices of a polygon defining the
shape of the region. These coordinates should not be defined using
Scaled or Offset constructs. Graphics.Region constructs are inert
except when interpreted as a graphic for a SuperWidgetGraphic-
sPanel.

Graphics.Region construct

©2006 David Bailey

The Super Widget Package 27

Action.Function Supplies a function of three or five arguments which is called each
time the mouse performs an action as specified by the Mouse.Mode.
The first argument will be the control variable of the region, followed
by x,y or x1,y1,x2,y2 depending on the drag mode.

Mouse.Mode Specifies mouse behaviour in the region. Values include:
CliClick.Action — Take action on mouse clicks (default).

Line.Drag.Action — Show dragging operations with an XOR'ed line
and take action when the mouse key is finally released.

Rectangle.Drag.Action — Show dragging operations with an XOR'ed
rectangle and take action when the mouse key is finally released.

Region.Drag.Action — Dragging operations drag a copy of the entire
region across the graphics area and take action when the mouse key is
finally released. (Imagine, say, dragging electronic circuit symbols or
musical notes across the graphics surface).

Leave.Dragged. Image Used in conjunction with Mouse.Mode->All to achieve a smoother
visual effect in certain situations — see below.

Menu Supplies a menu that appears as a popup menu when the right mouse
button is clicked (Windows) or an equivalent operation is performed
in another environment. The menu structure uses the same scheme as
used in the SuperWidgetFrame. Each menu function should accept
one argument — the control variable of the region.

Mouse.Cursor Specifies the name of a cursor to be used when the mouse is in the
given region. Cursor names include "DEFAULT CURSOR",
"CROSSHAIR CURSOR", "WAIT CURSOR",
"TEXT CURSOR", "HAND CURSOR".

Tool.Tip Specifies a string to be used as a tool tip — displayed as the mouse
cursor enters the region.

Options for Graphics.Region construct

A Graphics.Region can be any polygonal shape and can be of any size up to the size of the entire graphic. Graphic:
s.Region constructs can be geometrically nested, but should not merely overlap, as this would make it impossible to
unambiguously assign a region to every point. Overlaps are not faulted, however, as in some situations it may be hard to
avoid a slight overlap of regions, and the resultant ambiguity does not really matter. Each region can have its own cursor and
context menu, and responds to the mouse in a way that is determined by the Mouse.Mode. Line and Rectangle dragging
operations must begin and end in the same region, but for Mouse .Mode->Region.Drag.Action a copy of the entire
region will be dragged across the window.

The control variable of a Graphics.Region is closely analogous to the control variable of a super widget. In particular,
it is possible to set up options for a Graphics.Region ahead of time using Set.Variable.Options.

With Mouse .Mode->Click.Action mouse clicks are simply reported to the Action.Function for the region in
which they occur, however the other Mouse .Mode options result in temporary changes to the window contents. Normally
these are removed just before the Action.Function is called to respond to the situation. In many cases, the Action. -
Function will replace the image in a way that corresponds to the temporary changes. In these situations, setting Leave. -
Dragged.Image->True will reduce the flicker by leaving the line, rectangle, or graphic at the end of the drag operation
ready for the Action.Function to replace the graphic. Note that it is vital that if this option is used the graphic is indeed

©2006 David Bailey

28 The Super Widget Package

updated (using UpdateWidgetValue) otherwise inconsistent results will be observed.

If you do not require any explicit mouse interaction in a region, simply leave the Mouse .Mode at its default of Click.Ac-
tion, and do not supply an Action.Function.

All of this is best illustrated with an example. We start with a list (fx) of {x,y} data points and define a function build.graph
that sets up the global variable graph with a modified ListPlot. Every point in the ListPlot is surrounded by a tiny
Graphics.Region with its own cursor and menu. This means that as you move the mouse cursor over the graph it will
change into a hand cursor near to each point. When this happens, a right click (or equivalent in non-Windows environments)
will display a 1-element context menu. Clicking on this will delete the point in question.

Needs ["SuperWidgetPackage "]

fx = Table[{N[x], x + Random[] - 0.5}, {x, 0, 10}];

build.graph[] := Module[{},
graph = ListPlot[fx, DisplayFunction -» Identity,
ImageSize -» {600, 600}, PlotRange » {{0, 10}, {0, 10}}]
/. Point[pp: {11 List, ___}] :> Sequence @@Map[Point, pp]
/. Point[{x , y }] :> {Point[{x, y}], Graphics.Region[

Evaluate[Unique[]], Table[{x+0.2Cos[t], y+0.28Sin[t]}, {t, 0, 2w, 7w/ 8}],

Mouse.Cursor -> "HAND CURSOR", Menu - {{"Delete point", dp}}]};
UpdateWidgetValue [graph];
1;

dp[v_] := Module[{s},

s = Cases[graph, {_Point, Graphics.Region[v, __ 1}, «][[1]];
fx = DeleteCases[fx, {s[[1, 1, 1]], _}1;
build.graph[];

1;

build.graph[];
SuperWidgetGraphicsPanel [graph] // SuperGUIRunModal

This is a simple example of genuinely interactive graphics. Note in particular that the P1otRange option has been used on
ListPlot. This is important because it is vital that the plot axes are the same from plot to plot (even if you delete an end-
point) otherwise the plot will jump about as the user manipulates it. If, for any reason, the P1otRange cannot be fixed, it is
vital to add the option ReCalibrate->True to the call to UpdateWidgetValue. This is expensive, which is why it
is not set by default, but it is vital that the SWP is told if the graphic scale changes in some way.

Since the control variables for the Graphics.Region constructs in the above example are never given a value, it was not
necessary to give the function dp the HoldFirst attribute.

In the following, slightly more realistic example, points may be added with a left mouse button click or deleted (as above)
using the context menu.

©2006 David Bailey

The Super Widget Package

29

Clear[myPlot];

addingPoints = True;
myData = {{Unique[], 1, 1}, {Unique[], 4, 4}};

dp[v_] := Module[{s},
myData = DeleteCases[myData, {v, _, _}1;
ppl = myPlot[];
UpdateWidgetValue [ppl];
1;

myPlot[] := Module[{m, c, x, fitting = False, tmp, pl, p2},
If[Length[myData] > 1,
fitting = True;
tmp = FindFit[Map[Drop[#, 1] &, myData], c+mx, {c, m}, x];
pl={0,c} /. tmp;
P2 = {10, 10m+c} /. tmp;
1;
Graphics|[{
Map|[{Point[Drop[#, 1]], Graphics-Region[Evaluate[#[[1]]],
Table[{#[[2]] +0.2Cos[t], #[[3]] +0.28in[t]}, {t, 0, 27, ™/ 8}],
Mouse.Cursor -> "HAND CURSOR", Menu - {{"Delete point", dp}}]} &, myData],

If[fitting, {RGBColor[1l, 0, 0], Line[{pl, P2}]1}, {}1],
Text["Use the mouse to add points,\nright click on a point to remove it.",
{5, 16}, {0, 0}, TextStyle » {FontSize » 17}]
Y,
DisplayFunction -» Identity, ImageSize -» {600, 400},
AspectRatio -> 0.6, Axes -> True, PlotRange -» {{0, 10}, {-5, 18}}]

1;

myExit[] := Close.Frame[frl];

mouseClick[_, x , y] := Module[{pt},
Print["Adding data point: ", {x, y}1’
myData = Append [myData, {Unique[], x, v}];
ppl = myPlot[];
UpdateWidgetValue[ppl] ;

1;
myMenu = {{"File", {{"Exit", myExit}}}}’

ppl = myPlot[]; SuperWidgetFrame[frl,
{SuperWidgetGraphicsPanel [ppl, MouseClickFunction -> mouseClick]},
Title -> "Simple interactive graph", Menu - myMenu] // SuperGUIRunModal ;

Adding data point: {8.9157, 9.81602}
Adding data point: {6.78779, 8.40922}
Adding data point: {6.64826, 5.52864}

Adding data point: {4.39826, 6.60049}

©2006 David Bailey

30 The Super Widget Package

This program displays a simple straight-line graph with just two points. As you add or delete points using the mouse, the
best-fit straight line is re-drawn on the fly. You can achieve all this using the relatively tiny amount of code above — nothing
is hidden!

Bear in mind that the above example is still extremely simple because the code has been kept easy to understand. You
should consult the examples at my website for more extensive examples:

http : // www.dbaileyconsultancy.co.uk / swp_examples / swp_examples.html |.

The need for calibration

Ordinary Mathematica graphics is quite unlike most computer graphics in that you can create a plot or a low-level graphical
object without any thought about the scale necessary to place it on the screen or paper. The system chooses a scale for you
just before the image is created. You can create a plot of part of the Milky Way (or part of a molecule) using units of meters
if you wish — the system will simply take care of the necessary scaling. The SuperWidgetGraphicsPanel determines
what this scale is by calculating (this process is not visible to the user, unlike in earlier versions) a slightly modified version
of your plot with certain colours adjusted and two small spots added. The resultant image is then read back into Mathemat-
ica as an array of pixels, and used to determine the relationship between mouse position and graphics coordinates. Because
calibration of a large image can be quite time consuming, by default it is only done once, and the SWP 'assumes' that
subsequent images will require the same calibration. It is important that your graphics satisfy this assumption, otherwise the
mouse coordinates returned by the system will be wrong. For example, if you initially display
Plot[Sin[x], {x,0,10}] and subsequently use UpdateWidgetValue to display Plot [x"2, {x,0,10}], it is
vital to use the option ReCalibrate->True on the call to UpdateWidgetValue. If necessary it may be useful to
bound your graphics with a box (and not draw outside the box!) to ensure successive images use the same scale.

Re-sizing a graphic

When a graphics panel is re-sized, the system will by default re-scale and re-calibrate the image automatically. However,
sometimes this is not what is required — for example it may be necessary to display more of some diagram as the image
expands, rather than merely scale up the existing diagram. If the ResizeFunction option is used, the replacement of the
image is left to you. You must generate a new plot with the new ImageResolution parameters (arguments 2 and 3) and
update using ReCalibrate->True. If you fail to update and re-calibrate the plot inside your ResizeFunction the
image will not fill the space and the mouse coordinates will not be properly calibrated.

Mouse modes Line.Drag.Action, and Rectangle.Drag.Action

Sometimes, as above, we want to interact with a graphic by means of clicks — single points — but sometimes it is more
meaningful to think in terms of lines or rectangles. Think of a simple line drawing program. When the mouse is pressed and
dragged we want a line or box to appear on the drawing surface and track the motion of the mouse. Software packages
normally do this by drawing the extra lines using XOR mode (which makes it fast to remove the line and re-draw it as the
mouse moves). Since none of this corresponds to normal Mathematica graphics operations, which would, in any case, be too
slow to track mouse movements, this XOR line drawing is performed by the SuperWidgetGraphicsPanel itself.
These options can be selected using the Mouse .Mode option to the Graphics.Region, and can be changed on the fly
using the Set .Mouse .Mode function.

The following example is a little longer than most in this user guide, but it does illustrate something of the power that is
possible using this super widget:

©2006 David Bailey

The Super Widget Package

31

Needs ["SuperWidgetPackage "]

©2006 David Bailey

32

The Super Widget Package

drawing = {};

drawing.history = {};

style=1;

Set.Line.Style[] := (Set.Mouse.Mode[panell, gr0, Line.Drag.Action]; style =1);
Set.Box.Style[] := (Set.Mouse.Mode[panell, gr0, Rectangle.Drag.Action]; style = 2);
myExit[] := Close.Frame[frl];

do.drawing[] := Module[{},

Graphics|[{drawing, Graphics-Region[gr0O, {{O, O}, {O, 10}, {10, 10}, {10, O}},
Mouse.Mode - Line.Drag.Action, Action.Function -» updateDrawing]},
PlotRange -» {{0, 10}, {0, 10}}, AspectRatio » 1, ImageSize -» {600, 600}]

1;

SetAttributes[newLine, HoldFirst];
updateDrawing[pvar , x1_, y1 , x2_, y2] := Module[{},
drawing.history = Append[drawing.history, drawing];
Switch[style,
1,
drawing = Append[drawing, Line[{{x1, y1}, {x2, y2}}11,

2,
drawing = Append[drawing, Line[{{x1, y1}, {x1, y2}, {¥2, y2}, {%2, y1}, {*1, y1}}1]
1;
panell = do.drawing[];
UpdateWidgetValue [panell];
1;

undo.update[] :=
If[drawing.history =!= {},
drawing = Last[drawing.history];
drawing.history = Drop[drawing.history, -1];
panell = do.drawing[];
UpdateWidgetValue [panell];
1;

SuperGUIRunModal [
SuperWidgetFrame [frl, {
panell = do.drawing][];
SuperWidgetGraphicsPanel [panell],
WidgetSpace[10],
{WidgetFill[], SuperWidgetButton[bbl, "OK", 1], WidgetFill([]},
WidgetSpace[10]
}, Title -> "Example drawing program",
Menu - {
{"File", {{"Exit", myExit}}},
{"Edit", {{"Undo", undo.update}}},
{"Objects", {{"Line", Set.Line.Style}, {"Box", Set.Box.Style}}}
}
] (* ,ConcealNotebooks-»True x)

1

©2006 David Bailey

The Super Widget Package 33

When you run this program you are presented with a big white drawing surface. As you drag the mouse (i.e. move it with the
left button depressed) a line will appear. This line will disappear when you release the mouse button, but the updateDraw:
ing function is then called and refreshes the graphic with the extra line. By using the menu option it is possible to change to
rectangle drawing by changing the mouse mode of the graphics region and recording the change of object in the style
variable.

It is important to realise that it is your Mathematica code which ultimately draws the permanent line, rectangle, or whatever.
Thus, for example, if this were an electronic circuit wiring application, it might be desirable to spot line endpoints that were
close to components and move the line slightly to close the gap. You can do what you like with the coordinate information
that you get from the mouse — you don't need to just draw a line between the end-points.

The above code also includes an (infinite!) undo menu option. This is achieved by simply storing a list of drawings created
so far and backing off to the previous one in response to the menu item. I hope I have illustrated that the SuperWidget -
GraphicsPanel opens up a whole new realm of Mathematica graphics!

Finally, if you put back the option ConcealNotebooks—True into the code, the notebooks will be hidden while the
GUI is displayed. This is recommended for many finished applications because prevents the user inadvertently clicking on
the notebook and obscuring the window to which he should be attending. This unfortunate problem occurs because the Java
GUI application is executing as a separate process from Mathematica — linked together by MathLink.

Mouse mode Region.Drag.Action

When you start a drag operation in this mode, the contents of the whole region are dragged as a picture across the graphic.
One of the examples at my website exploits this in a simple electronic circuit drawing program. The circuit symbols (such as
transistors) are each drawn in a Graphics.Region, and can be dragged about the screen.

In the following code a red arrow is placed on a graph, and a Graphics.Region is placed round the arrow and set up so
it can be dragged across the screen. The test function is called at the end of the drag and re-positions the arrow, ignoring
the y value. It also computes the root of the equation f [x]==0 using FindRoot, and places a (passive) blue arrow at this
point. This process can be repeated as desired. Notice that if you position the red arrow well away from a root, it does not
always find the nearest root.

Needs ["SuperWidgetPackage "]

©2006 David Bailey

34 The Super Widget Package

Clear[£f];
results = {};
x.pos = 0;
f[x] :=88in[x];
test[_, x1_, yl1_, x2_, y2] := Module[{ans},
X.pos = x2;
ans = x /. FindRoot[f[x] == 0, {x, x-pos}];
If[ans > -10 && ans < 10,
results = Append[results, blueArrow([x /. FindRoot[f[x] == 0, {x, x.pos}], 0, 0.5]]1~
p = myPlot[];
UpdateWidgetValue [p];
1;
redArrow[x , y , scale] :=
{Red, Polygon[{{x, v}, {x-scale/ 2, y + scale}, {x+scale/ 2, y+scale}}],
Polygon[{{x - scale/5, y + scale}, {x-scale/5, y + 3 scale},
{x+scale/5, y+3scale}, {x+scale/5, y+scale}}],
Graphics.Region[gr0, {{x, v}, {x-scale/ 2, y + scale}, {x-scale/5, y+ scale},
{x-scale/5, y+3scale}, {x+scale/5, y+3scale}, {x+scale/5, y + scale},
{x+ scale/ 2, y +scale}}, Mouse_Mode -> Region.Drag.Action,
Action.Function -» test, Mouse.Cursor -> "HAND CURSOR"]};

blueArrow[x , y , scale] :=
{Blue, Polygon[{{x, v}, {x-scale/ 2, y + scale}, {x+ scale/2, y+ scale}}],
Polygon[{{x - scale/5, y + scale}, {x-scale/5, y + 3 scale},
{x+scale/5, y+3scale}, {x+scale/5, y+scale}}]}

myPlot[] := Plot[f[x], {x, -10, 10}, PlotRange -» {{-10, 10}, {-10, 10}},
ImageSize -» {600, 600}, AspectRatio » Automatic,
DisplayFunction » Identity, Epilog » {redArrow[x.pos, 8, .5], results}];
p = myPlot[];
SuperWidgetGraphicsPanel [p] // SuperGUIRunModal

Animation using icons

An 'icon' is a small 2-D graphics that is not, in general rectangular. These are created using Graphics objects, and one colour
is designated as representing the 'colour' transparent. Sprites may be added, moved and removed from a scene for very little
cost, and so offer an effective way to implement certain types of animation. Icons can only be attached to 2-D graphics.

©2006 David Bailey

The Super Widget Package

35

Add.Icon[var,varl,x,y,opts]

Movedcon[var,varl,x,y]

Delete.Icon|var,varl]

Delete.All.Icons|var]

Service.GUI[]

Adds a icon to the SuperWidgetGraphicsPanel associated with
variable var. The variable varl holds the Graphics object,

and is used to refer to the icon in subsequent operations. The
icon is initially positioned at the point (x,y) in Mathematica
graphics coordinates. See below for details of the options.

Moves the icon labelled by varl in the SuperWidgetGraphicsPanel
associated with variable var to the specified point.

Deletes the icon labelled by variable varl from the SuperWidget-
GraphicsPanel associated with variable var.

Removes all icons from the SuperWidgetGraphicsPanel associated
with variable var.

This should be called reasonably frequently within an animation to
ensure that other GUI controls are processed in a timely fashion. This
function can be useful in any situation in which a lengthy calculation
might prevent a speedy GUI response.

Graphics animation using icons

Here is a very simple — but instructive — example of an animation using icons:

my.iconl = Graphics|[{Green, Polygon[{{0, 0}, {1, 0}, {0.5, 1}}1},
AspectRatio -» Automatic, ImageSize - 20];

my.icon2 = Graphics|[{Red, Polygon[{{0, O}, {1, 0}, {0.5, 1}}1},
AspectRatio -» Automatic, ImageSize - 20];

vvv = ParametricPlot[{Cos[5 t], Sin[3 t]}, {t, O, 27w},
AspectRatio -» Automatic, DisplayFunction -» Identity];

SuperWidgetGraphicsPanel [vvv] // SuperGUIRun;

Add.Icon[vvv, my.iconl, 0, 0];
Add.Icon[vvv, my.icon2, 0, 0];
time = 0;
While[Active.WidgetQ[vvv],

Move.Icon[vvv, my.iconl, Cos[5 time], Sin[3 time]];

Move.Icon[vvv, my.icon2, Cos[5 (time +)], Sin[3 (time +m)]];

Service.GUI[];

Pause[0.1];

time = Mod[time + 0.05, 2 x];
1;

©2006 David Bailey

36 The Super Widget Package

One instant from the above animation

° Observe that the speed of this animation is controlled by the length of the pause and the size of the time step. Remov-
ing the pause demonstrates that the maximum update rate is very high. Animations should, wherever possible, be controlled
by a pause, rather than than simply running flat out, because this makes the display independant of subsequent increases in
processor performance.

° Note that the While loop executes until the variable vvv is no-longer associated with a widget — i.e. until the
window is closed. The calls to the function Service.GUI are desirable whenever a lengthy calculation (not just an
animation) is performed while a super widget is on display — they ensure that actions associated with other widgets are
processed in a timely manner.

° The size of the icons is controlled by the TmageSize option to the Graphics structure — omitting this will result
in absurdly large icons. The automatic aspect ratio ensures that the shape of the icons are not squashed.

° Although the above example does not require this, it would be possible to update the main graphic within the
animation loop by calling UpdateWidgetValue on the variable vvv. This would be a much slower operation than

©2006 David Bailey

The Super Widget Package 37

moving the icons, and the animation would need to be designed with this in mind.

By default, icons created by Add.Icon render white parts of the icon as transparent. Since this is the default background
colour, this is often a good choice, however the option Transparent.Color can be used to select another colour to play
this role. You need this option if part of the icon is to display as white. Also by default, icons are centred on a point in the
middle of their rectangle. This point is known as the 'hot spot' because it is the point to which the icon refers. Sometimes it is
more convenient to select a different hot spot — e.g. in the case of an icon shaped like an arrow — using the Hot.Spot
option. This defaults to {0.5, 0.5} and represents the position of the hot spot as a fraction of the total icon dimensions.
Thus {0, 0} would represent bottom left, {1, 1}, top right, etc.

Dynamic tool tips

A tool-tip is normally used to provide fixed some help information to the user. Many of the super widgets take a Tool.Tip
option for exactly this purpose. However, within ia graphics panel, it is usually more convenient to use a tool-tip that is a
function of the (x,y) position. This can be particularly useful for displaying information about a complex function. The idea
is that each time the mouse moves to a new location on the graphics surface, a function of three arguments is called to
recompute the tool-tip string. For example:

ToExpression[" {plot}"];
plot = DensityPlot[Re[Sin[x+Ivy]], {x, -5, 5}, {y, -5, 5}, ColorFunction - Hue,
DisplayFunction » Identity, ImageSize -» {600, 480}, PlotPoints - 40,
Mesh -» False, Epilog -» {Table[Line[{{-5, k}, {5, k}}], {k, -4, 4}],
Table[Line[{{k, -5}, {k, 5}}1, {k, -4, 4}1}]:
HoldFirst[f];
£f[_, x_, y_] := Module[{},
" f[" <> ToString[SetAccuracy[x+Iy, 4]] <>
"]=" <> ToString[SetAccuracy[Sin[x+Iy], 4]]
1;
SuperWidgetGraphicsPanel [plot, Dynamic.Tool.Tip - f] // SuperGUIRunModal

©2006 David Bailey

38 The Super Widget Package

k]
T

_q -

- Graphics =

Although the above image does not actually show the tool-tip (because I had to us the mouse to take the picture!), an
animated GIF that shows the tool-tips can be found on the SWP website here.

If the mouse cursor enters a graphics region with its own tool-tip, this takes precedence over the dynamic tool-tip.

Notice that the mesh is not useful if, as here, enough points are selected to make a smooth image, therefore the above code
disables it and draws a grid instead.

©2006 David Bailey

The Super Widget Package 39

Displaying other objects using SuperWidgetGraphicsPanel
Although SuperWidgetGraphicsPanel is normally used to display graphics, it can be used to display any object. For example:

xxx = PadeApproximant [Exp[x], {x, 0, {2, 3}}]~;
SuperWidgetGraphicsPanel [xxx] // SuperGUIRunModal

Graphics regions can be introduced by using the Annotation mechanism introduced at 6.0. For example:

Xxx = a + Annotation[b, Graphics.Region[ggg, Null, Tool.Tip -> "This is the wvariable b"]]

This object would display as a+b, and a tool tip would appear when 'b' was moused over. All the features of graphics regions
are available using this mechanism.

Tlp I | This is just one of the many interesting possibilities opened up by the introduction of Annotation in

Mathematica 6.0 because it allows data to be associated with an expression invisibly.

LiveGraphics3D

Introduction to LiveGraphics3D

LiveGraphics3D is a Java applet written by Martin Kraus which has been used extensively by Mathematica programmers
interested in displaying and manipulating 3-dimentional objects. An 'applet' is a piece of Java code that is designed to run
inside a web page. It is called from HTML with various parameters that control it. This was the original idea of LiveGraphic-
s3D, which has been used to create many interactive mathematical displays, for example here. These displays can be rotated
by the mouse. In the later versions it is also possible to add points that can be dragged using the mouse and which cause the
rest of the object to reconfigure accordingly. The LiveGraphics3D applet can be downloaded here together with its documen-
tation, and you should ensure you have version 1.83 or later.

A good place to put the file Live.jar to ensure it is found by the system is inside the Java subdirectory of the SuperWidget-
Package - which will be found at
$InstallationDirectory<>"/addons/Applications/superwidgetpackage/Java". This is where the
SWP will put it if you rely on SWP to download the applet from the internet the first time you use it.

More recently, LiveGraphics3D has acquired a J/Link interface so that a Mathematica program can create a window contain-
ing LiveGraphics3D and control it directly — without using a browser. Using the SWP, it is possible to treat a LiveGraphic-
$3D object as a widget and control it with other widgets on the same window.

©2006 David Bailey

40 The Super Widget Package

This user guide does not attempt to describe how to use the LiveGraphics3D applet, only how to interface it with the SWP.

SuperWidgetLiveGraphics3D

SuperWidgetLiveGraphics3D [Displays Graphics3D object stored in v using LiveGraphics3D
v,opts]

LiveGraphics3D super widget

Background Background colour for the applet — defaults to white.

ChangeFunction One-argument function to be called when a user mouse action might
have changed one of the independent parameters or rotated the image.

FullChangeFunction One-argument function to be called when a user mouse action might
have changed one of the independent parameters or rotated the
image. The function is called repeatedly during dragging operations —
see text for details.

Pixel . Width Width in pixels for the applet.
Pixel.Height Height in pixelts for the applet.
Independent .Variables Specifies a list of independant variable specifications of the form var-

>real-value. See the LiveGraphics3D documentation for full details.

Dependent.Variables Specifies a list of dependant variable specifications of the form var-
>real-expression. See the LiveGraphics3D documentation for full
details.

Mouse.Dragable Determines whether the mouse can rotate the image. This defaults to

True, but can usefully be set false in cases where the mouse is used to
control the variables..

Options for SuperWidgetLiveGraphics3D

First you must prepare some input suitable for the LiveGraphics3D applet. A simple 3-D plot will do, but there are issues
regarding overlapping polygons — so read the LiveGraphics3D documentation for full details. This data is then used in the
control variable:

Needs ["SuperWidgetPackage "]

v = Graphics3D[Plot3D[Sin[xy], {x, -2, 2}, {y, -2, 2}, DisplayFunction -» Identity],
ViewPoint -» {1, 1, 1}, ViewVertical » {0, 0, 1}];

{SuperWidgetLiveGraphics3D[v], T10, {0, SuperWidgetButton[Null, "OK", 1], 90}, 910} //
SuperGUIRunModal

Note that the image can be rotated with the mouse, or even set spinning.

The LiveGraphics3D applet is capable of working interactively. The Graphics3D object can contain variables which can be
controlled by dragging the mouse or used to produce animation. It is possible to interact with this process using the Change
Function or FullChangeFunction options. The supplied function will be called (with the associated variable as

©2006 David Bailey

The Super Widget Package ¥

argument) if a user mouse action might have changed an independent variable or rotated the image. The function that you
supply must tolerate the fact that it will sometimes get called when no change has taken place. This is due to the rather loose
connection between the SWP and the applet. Passing the associated variable to the LiveGraphics3DVariables
function will return a complete set of variable values as a set or rules. It is particularly important that these variables are
never given actual values within your Mathematica code.

Using the FullChangeFunction it is possible to get continuous feedback while a drag operation is being performed.
While this can be useful, it may overload the processor and cause the dragging operation to become erratic in some situa-
tions.

By altering the graphical data stored in the associated variable and calling UpdateWidgetValue it is possible to com-
pletely change the image on display.

Although the above may sound a little confusing, the concept of parameterized graphics using LiveGraphics3D is well
described at Martin Kraus' site — so a simple example of its use in the super widget should suffice:

Circle3D[{px , py , pz_ }, £] :=With[{eps =0.1},
Line[Table[{px + rCos[t], py + rSin[t], pz}, {t, 0, 2.0 w+eps, eps}]]];

Text3D[x , pos] := Text[StyleForm[x, FontSize » 35, FontWeight -> "Bold"], pos % 1.095];
xxx = 1/8Sqrt[2.0];
yyy =1/Sqrt[2.0];
gg = Graphics3D][{

Thickness[0.003],

Text3D["A", {-1, 0, 0}], Text3D["B", {1, 0, 0}], Text3D["C", {xx, yy, 0}1,

Circle3D[{0O, O, 0}, 1], Line[{{-1, O, O}, {1, 0, O0}}1,

PointSize[0.015], Point[{xx, yy, zz}],
Line[{{-1, 0, 0}, {xx, yy, 0}, {1, 0, 0}}]
}, ViewPoint » {0, 0, 4}, ViewVertical » {0, 1, 0}, Boxed -» False];

indepvar = {xx -» XXX, Yy - YYV}’
depvar = {zz -» 0, theta -> ArcTan[xx, yy], xx » Cos[theta], yy » Sin[theta]};

©2006 David Bailey

42 The Super Widget Package

Clear[£f];

£f[_] :=Module[{s},
s = LiveGraphics3DVariables[gg];
{xxx, yyy} = {xx, yy} /. s;
AC = Norm[{xxx, yyy} - {-1, 0}1;
BC = Norm[{xxx, yyy} - {1, 0}];
res = SqQrt[AC*2 + BC*2];
UpdateWidgetValue[AC] ;
UpdateWidgetValue[BC] ;
UpdateWidgetValue[res];

1;

SuperWidgetFrame [Null, {

{10,
{
{"ac", , "=", SuperWidgetRealBox[AC]},
{"BC", , "=", SuperWidgetRealBox[BC]},
{Image.Expression[HoldForm[Sqrt[AC*2 +BC*2]]],
, "=", SuperWidgetRealBox[res]}
},

SuperWidgetLiveGraphics3D[gg, Pixel . Width » 600, Pixel_Height -» 450,
Mouse.Dragable -» False,
Background -» RGBColor[0.8, 0.8, 1],
Independent.Variables -» indepvar,
Dependent.Variables - depvar,
FullChangeFunction -» £]}, 10,
{10, SuperWidgetButton[Null, "OK", 1], 9o}, 910}, Title -> "Euclidean Geometry"
] // SuperGUIRun;

This very simple example illustrates a well known theorem in geometry that a triangle inscribed in a circle so that one side is
a diameter will be right angled. If you move the mouse over point C, you will see it respond — meaning it is draggable. Try
dragging the point round the circle and watch the data in the rest of the GUI adjust accordingly. Note that the dependent
variables list contains rules that constrain the point C to lie on the circle. Because all the coordinates in this example have
z=0, and because it is viewed from directly above (positive z) the diagram is essentially 2-dimensional. For this reason, the
Mouse.Dragable->False option is used to prevent the 'paper' being rotated by the mouse.

JavaView

About JavaView

JavaView is another freely available Java program that displays graphics in a Java window and lets you manipulate the
image with the mouse. It was written by Konrad Polthier and is available here. In many ways it is similar to LiveGraphic-
s3D, but the graphics are generally considered to be superior, and it is more extensively programmable via J/Link (but you
need to know a little Java). JavaView can be used in many environments (not just Mathematica) but it comes with some
interface code for Mathematica, which you should install. You can download JavaView for free, but you have to register the
software before it can be used sensibly. Note that the registration step is also free.

Tlp I | When you register JavaView, you will be sent a file called jv-lic.lic, to be placed in the JavaView\rsrc

©2006 David Bailey

The Super Widget Package 43

directory. When installed on a machine with Mathematica, there are two such directories — one in the Mathematica AddOns
tree, and one in the main software directory tree (typically c:\Program Files under Windows). It is important that a copy of
this license file is placed in both the JavaView\rsrc directories.

In order to control some of the more advanced features of JavaView — such as the ability to map textures on to 3-D objects —

it is necessary to use J/Link, so some of the examples in this section assume a knowledge of J/Link and Java, although this is
not necessary in order to use JavaView as a simple viewer.

SuperWidgetJavaView

SuperWidgetJavaView [v, opts] Displays Mathematica graphics (usually 3-D) stored in v. The
graphics can be rotated by dragging with the mouse.

JavaView super widget

Pixel.Width Width in pixels for the applet.
Pixel .Height Height in pixelts for the applet.
Pick.Camera.Listener Specifies a function to be called when a camera pick event occurs

(see below).

Drag.Camera.Listener Specifies a function to be called when a camera drag event occurs
(see below).

Options for SuperWidgetJavaView

Using the SuperWidgetJavaVieuw, it is possible to embed a JavaView window (or windows!) in a SWP GUI:

Here is a simple example:

©2006 David Bailey

44 The Super Widget Package

ZZZ =

parametricplotsn[{(«/? Cos[v]2 Cos[2u] +Cos[u] Sin[2 v])/ (2 -2 sin[3u] Sin[2 v]),

(«/7 Cos[v]2 Sin[2 u] + Cos[u] Sin[2 v])/ (2 -4/2 sin[3u] Sin[2 v]),

3 Cos[v]?

I4 {ul _71-/2! 71-/2}!
2-42 Sin[3u] Sin[2 v]

{v, 0, n}, DisplayFunction -» Identity, Axes -» False, Boxed - False] ;
zzz[[1]] = Prepend[zzz[[1]], EdgeForm[]];
{SuperWidgetJavaView[zzz],

Y10,
{90, SuperWidgetButton[Null, "OK", 1], 90}, 910} // SuperGUIRun;

Tlp ! Normally, ParametricPlot3D produces an image in which the edges of each triangle are drawn in black.

©2006 David Bailey

The Super Widget Package 45

To suppress these, the above code splices in the EdgeForm[] directive ahead of the rest of the graphics. Of course, this trick
can be used generally, not just in the SWP/JavaView context.

JavaView objects can be manipulated using J/Link in many ways. Typically these operations use the geometry and display
objects belonging to the JavaView widget.

Tlp I | Under Mathematica 6.0 the above example issues a warning about a package. This does not seem relevant to

the use of JavaView inside the SWP, and will doubtless be fixed in a subsequent version of the software.

Camera listeners

JavaView supplies several 'listener classes'. The most important one is the camera listener, which can be hooked up directly
using options to SuperWidgetJavaView. The function should accept two arguments — the event class, and a second argument
which seems to always contain the string "hello". Perhaps a future version of JavaView will remove this argument, so it may
be best to code the function to take an arbitrary number of arguments.

For full details of camera events, consult the JavaView documentation, but pick events happen at the start of a drag, fol-
lowed by a sequence of drag events.

To avoid a buildup of unwanted Java objects, the first argument (the event) should be removed using RemoveJavaObject
when no longer required.

Manipulating JavaView objects

Get.JavaView.Objects [v] DReturns a list of Java objects belonging to the JavaView widget
associated with variable v. Currently this list contains the geometry
object and the display object. Further objects may be appended to
this list in future versions.

Get.JavaView.Objects function

A JavaView display is controlled by a number of Java objects. The traditional way to use JavaView is to manipulate these
objects directly using J/Link. Although this is not usually necessary in simple examples, it is sometimes useful to obtain
these objects — as in the texture mapping example that follows.

Using texture mapping

This example exploits some of the more advanced features of JavaView to perform texture mapping on a 3-D structure.
Consult the JavaView manual for more details of the J/Link calls that are used here.

Tlp I | Note also, that because the pathname is consumed by Java code and not by Mathematica, the correct separa-

tor characters must be used to form the path to the texture file. This is obtained from $PathnameSeparator.

©2006 David Bailey

46

The Super Widget Package

<< JavaView JLink" ;
<< Graphics SurfaceOfRevolution";

texturise[] := Module[{geom, tex},
geom = Get.JavaView.Objects[zzz];
tex = TextureImage [SuperWidgetPackagePath[] <>
$PathnameSeparator <> "ExampleFiles" <> $PathnameSeparator <> "wood.gif"];
geom[[1l]] @setTexture[tex];
geom[[1]] @makeVertexTextureFromBndBox [0, 1];
geom[[1]] @showVertexTexture [True] ;
geom[[1l]] @update[geom[[1]]]
1;

zzz = SurfaceOfRevolution[{1.2 + Sin[x], x},
{x, 0, 2Pi}, DisplayFunction » Identity, Axes -» False, Boxed -» False];

SuperGUIRunModal [{SuperWidgetJavaView[zzz],
Q10
{10, SuperWidgetButton[Null, "OK", 1], 90}, T10}, On.Display —» texturise]

©2006 David Bailey

The Super Widget Package a7

=B

Observe that the surface of revolution is displayed in the normal way, and then the On.Display option to SuperGUIRun"
Modal executes a function that modifies the image to apply a wood texture.

©2006 David Bailey

48

The Super Widget Package

Frames, Dialog boxes, and menus

Introduction to Frames and Dialogs

SuperWidgetFrame [
v,contents, opts]

SuperWidgetDialog [
v, contents, opts]

Replace.Menu[v,menu]

Displays a frame with the given contents. The contents should be a
list (typically nested) of super widgets, widgets, and widget layout
operations. SuperGUIRun and SuperGUIRunModal each supply a
frame if none is supplied, however by providing one explicitly, the
Menu, Title, Tool.Bar, and CloseFunction options can be supplied.
The associated variable, v may also be used in the Close.Frame
function.

Displays a dialog box with the given contents. The contents should be
a list (typically nested) of super widgets, widgets, and widget layout
operations. Dialog boxes cannot accept a menu and do not have
maximise/minimise buttons in their caption bars.

Replaces the menu if a SuperWidgetFrame. This can be used
to create dynamic menus — analogous to the Mathematica
Windows menu which changes as notebooks are opened or closed.

Frame and Dialog super widgets

SuperWidgetFrame or SuperWidgetDialog supply the window that surrounds the various widgets that it contains. A
SuperWidgetFrame is supplied implicitly, where required, but by providing it explicitly you can customise it using its

various options:

©2006 David Bailey

The Super Widget Package 49

Menu Option for SuperWidgetFrame only — specifies a menu that appears
immediately beneath the caption bar. See below for details regarding
the construction of a menu.

Tool.Bar Option for SuperWidgetFrame only — specifies a tool bar that appears
immediately beneath the menu (if present). See below for details
regarding the construction of a tool bar.

Title Specifies a title (as a string) for the window. The title will appear in
the caption bar.

CloseFunction Specifies a function which is called with the associated variable v
when the window closes.

Window.Position Specifies the position of the top left hand corner of the frame or
dialog with respect to the top left of the screen.

Bare.Window Option for SuperWidgetFrame only — specifies that the window
appear without title or borders. This is typically used for very tempo-
rary information windows, and care should be taken to ensure that
such a windo is removed when not required, because the user cannot

do this explicitly.
Background.Wallpaper Specifies an image file to use as a background pattern to the frame.
Palette.Style Used together with Desktop opton to indicate

that the new frame should appear as a floating palette.

Options for Frame and Dialog super widgets

Menus

Menus are typically attached to the main window of an application, and are one of the main ways of presenting the functional-
ity of the program. A menu consists of a list of menu-items, which have one of three possible structures:

{Name,action-function}
{Name,action-function,accelerator}
{Name,sub-menu}

Menus can also contain Menu.Separator items to split a menu into sections separated by a line.

For example, here is a menu consisting of just one item — the "File" item. This item is defined , not by a function, but by a
sub-menu containing three menu items with the third separated from the other two. Menu functions take no arguments.

Needs ["SuperWidgetPackage "]

{{"File",
{{"Open", open.func}, {"Save", save.func}, Menu.Separator, {"Exit", exit.func}}}}

Here is a complete example:

©2006 David Bailey

50 The Super Widget Package

open.func[] := Print["Open"];

save.func|[] :

Print["Save"];

exit.func[] := Print["Exit"];
SuperWidgetFrame [fr, {
T10/
{910, SuperWidgetLabel[1l1ll, "Select the menu items in turn"], 910},
pETY
{90, SuperWidgetButton[bbl, "Ok", 1], 1o},
Q10
Y,

Title -> "Demo", Menu -> {{"File",
{{"Open", open.func}, {"Save", save.func}, Menu.Separator, {"Exit", exit.func}}}}
1 // SuperGUIRunModal

Save

meny items 0 turn

Notice how the "File" menu contains a sub-menu rather than a function name. Menus can be nested to an arbitrary depth.
Because the function names are also used to refer to menus in certain situations (analogous to the first argument of a super
widget), the functions must be specified as actual function names — not as pure functions. It is also possible to create menus
with images — which is particularly convenient for mathematical expressions, which are usually unprintable as Java strings:

Clear([x];

SuperWidgetFrame[fr, {
Y10,
{910, "This demos pretty menus", 10},
T10

Y

Title -> "Demo",

Menu -> {{"Function", {{Image-Expression[Sqrt[x+1]], fnl}, Menu.Separator,
{Image.Expression[l/ (1+x/ (1+x/ (1+x)))], £n2},
Menu.Separator, {Image.-Expression[l+x+x*2], fn3}}}}

] // SuperGUIRunModal

©2006 David Bailey

The Super Widget Package 51

vemo [[[B]X]

Function

Thiz demos pretty menus

vemo [|[B1)K]

Funickicar

To understand the real power of menus, it is worth looking carefully at a specific example — say Mathematica's Cell>Con-
vert to>InputForm (this refers to version 5.2, menu details sometimes vary between versions). Although this menu can be
accessed using the mouse, many people find it more convenient to use the keyboard. This particular menu item can be
accessed using the keyboard in two different ways. If you open the menu, you will see that it can be accessed using Shift-
Ctrl-I — this is known as a keyboard accelerator. Alternatively, on some platforms (including Windows), it is possible to
open menus progressively using menu mnemonics. In this case, if you hold the Alt key down, you will see that the 'C' of the
cell menu is underlined. Keeping the Alt key down and pressing 'C' will open the cell menu, where you will see that each
option also has an underlined letter - 'C' takes us to the sub-menu required, etc. The sequence Alt-CCI is known as a key-
board mnemonic. Mnemonics are very heavily used on platforms that support them, and are very easy to specify using the
SWP

The accelerator, if present, consists of a (case insensitive) string that defines a key with modifiers that will operate the menu
function directly. Here are a few examples of accelerators:

"Ctrl-A"

"Shift-Ctrl-Z"

"Alt-Q"

"Meta-Q"

Note that the Meta key does not apply to Windows platforms.

To specify a mnemonic, simply include an '&' character in the menu name (e.g. "&File") — the '&' will be removed, and on

suitable platforms, the next character ('F' in this case) will be underlined as part of the mnemonic. No special action is
required to support platforms such as the Mac which do not support mnemonics — the mnemonic will simply be ignored.

©2006 David Bailey

52 The Super Widget Package

Tlp I | The entire menu bar for Mathematica is defined in the file MENUSETUP.TR using the same '&' notation to

specify mnemonics as is used here.

There is no problem if your keyboard accelerators/mnemonics clash with those of Mathematica. If your GUI application is
in focus, its menu is in effect — not that of Mathematica.

Tlp 'l complex GUI programs, not all menu options make sense in all situations. For example, many menu

options may not make sense until the user has actually opened a file — say by using the 'file/open' menu item. Menu items
can ge disabled (which gives them a washed out appearance) by passing the name of their associated function to Set .En
abled.Status.

Toolbars

A toolbar is a strip of widgets positioned at the top of a window underneath the menu (if there is one). Typically it contains
small image buttons and combo boxes. The Tool.Bar option can be used on SuperWidgetFrame, and you simply
specify a list of super widgets to place on the bar.

Needs ["SuperWidgetPackage "]

new.func[___] :=Print["New"];

open.func[___] :=Print["Open"];

Print["Save"];

(Print["Exit"]; Close.Frame[fr]) ;

save.func|] :

exit.func|] :

SuperWidgetFrame[fr, {
T10/
{910, "Select the menu items in turn", 90},
T10,
{90, SuperWidgetButton[bbl, "Ok", 1], 1o},
T10
Y,
Tool.Bar - {
SuperWidgetButton[tbl,
Image.File[SuperWidgetPackagePath[] <> "/ExampleFiles/new.gif"], new.func],
SuperWidgetButton[tb2, Image.File[SuperWidgetPackagePath[] <>
"/ExampleFiles/open.gif"], open-.func],
Menu.Separator,
SuperWidgetButton[tb3,
Image.File[SuperWidgetPackagePath[] <> "/ExampleFiles/save.gif"], save.func]
},
Title -> "Demo",
Menu -> {{"File", {{"New", new.func}, {"Open", open.func}, {"Save", save.func},
Menu.Separator, {"Exit", exit.func}}}}
1 // SuperGUIRunModal

©2006 David Bailey

The Super Widget Package 53

Leaving a shadow

We have already seen a number of programs that use Close.Frame to destroy a window explicitly. The funstion
Close.Frame can take the option Leave .Shadow->True.

Using this option, you destroy the window, but leave a non-functional copy of the window visible on the screen until the
SWP puts up the next window. This has a number of practical uses:

e If you want to replace one window with another of the same size, but containing some different information, closing the
first using this option will create the illusion that you have somehow updated the window, not replaced it — i.e. there will be
no glitch.

e Many serious programs must do considerable work before they can display their first window. By greating a window —
possibly containing some relevant graphics — and then closing it with the Leave.Shadow option, you will create a splash
screen that will keep your users focussed until your real GUI fires up. This reproduces the behaviour of many GUI programs
— including Mathematica itself.

e [f you provide a button that initiates a task taking more than a second or so (remember that your user's may not all be using
fast processors), you can use a shadowed window to tell them to wait for a moment. Longer waits may be better handled
using a window with a progress bar, but this is inevitably more complex to program.

For example, the following code will display a simple splash screen while a Pause simulates a complex startup procedure:

SuperWidgetFrame [splash.screen, {Image.File[
SuperWidgetPackagePath[] <> "/ExampleFiles/consultancy.gif"]}] // SuperGUIRun;
Close.Frame[splash.screen, Leave.Shadow -> True];
Pause[5];
ShowMessageBox["The rest of the program", "", {"OK"}]

It is also possible to fade the shadow by mixing it with another colour by adding the option Fade.Colour->Blue (say,
use any colour specification here). This can sometimes be helpful to remind users that the controls on the shadow are
inactive!

SuperWidgetTextEditor

SuperWidgetTextEditor [v, opts] Implements a text editor,
where v contains the string of text.The text may contain newlines,
and will flow across multiple lines as required
(so it could consist of several paragraphs).The string must
only contain normal Java characters.The ChangeFunction
option can be used to monitor the changes made by the user.

Text editor super widget

©2006 David Bailey

54 The Super Widget Package

ChangeFunction Function to call when the user alters the text.

Font Font specification in the form {Name,face,size}

Tool.Tip String to use as the tool tip.

Panel.Margins Pixel margin to surround editing area — default {12,12,12,12}
Pixel.Width Pixel width for the widget.

Pixel.Height Pixel height for the widget.

Editable Specifies whether the text can be altered (default True).

This creates a simple text editing panel. The control variable is set to the initial value of the text string, and is updated as the
user makes changes. The text string can contain newlines, and will flow across multiple lines, with scroll bars as required.
Thus large quantities of text can be handled. The option ChangeFunction can be used to specify a 1-argument function
to be invoked each time a change is made by the user. The options Pixel . Width and Pixel.Height can be used to
override the default size of this widget. Also, it is possible to change the value of the control variable, and call Updatewid-
getValue to change the contents programmatically. Here we read a file from the ExampleFiles directory and manually
replace most of the text with the name of a vegetable:

Needs ["SuperWidgetPackage "]

Module[{str, v},
str = OpenRead|["SuperWidgetPackage/ExampleFiles/TextToEdit"] ;
v = Read[str, Record, RecordSeparators » {}];
Close([str];
SuperWidgetTextEditor[v, Pixel.Width » 300, Pixel.Height -» 200] // SuperGUIRunModal;

v

1

The SWP is supplied as a ZIP file containing all the files required in their
appropriate directories.. It is wvital that this directory structure is
preserved. Copy the file to the Mathematica directory, e.g. C:\program
files\wolfram research\mathematical5.1 (the exact directory depends on the
version of Mathematica installed). Unzip the file SuperWidgetPackage.ZIP
using a tool that preserves the directory structure and handles
long names correctly, e.g. PKZIP(R) Version 2.50, or WinZip(R).

Finally, start Mathematica, click on the 'Help' menu, and select 'Rebuild Help
index'. This will integrate the SWP documentation with the rest of Mathematica.
You will find the SWP help in the 'Addons' section of the help browser.

Note that by setting Editable->False you can display a portion of text (with scrolling if necessary) but prevent the user
from modifying it.

Exploiting HTML

SuperWidgetHTMLPanel [v, opts] Displays HTML string stored in v. Can respond to
hyperlinks by loading other pages (e.g. from the internet),
or be executing Mathematica code.

HTML super widget

This creates an HTML panel. The first argument is the associated variable, and should be set to a text string containing the
HTML. The result is laid out in the window, and if the HTML contains URL links, these are clickable and will start the

©2006 David Bailey

The Super Widget Package 55

browser. The options Pixel.Width and Pixel.Height can be used to set the size of the panel. The option Pixel. -
Margins can be set to an array of four integers (left, top,bottom,right) representing the margin size in pixel. A 15 pixel
margin is used by default. A single integer can be used to set all four margins to the same value. The Background option
may also be specified to set an overall background colour for the panel. Each of the examples in the examples section has a
Help/About box constructed with this super widget.

This super widget also recognises a special form of 'URL', beginning mathcommand:// — for example: mathcommand://Print-
[42] — which can be used to execute a command when the link is pressed. Since the syntax of HTML would preclude such a
command containing a double quote symbol, the sterling symbol '£' can be used instead of a double quote.

Although the text cannot be edited by the user, it can be changed by altering the value of the associated variable and using
UpdateWidgetValue. This could be particularly useful in 'Wizard' - like applications where you want to display some
explanatory text which changes as things progress.

Here is a small illustration of what is possible. Obviously, some knowledge of HTML (but none of cooking!) is necessary to
interpret this example:

Needs ["SuperWidgetPackage "]

pagel = "<html><body>" <>
"<hl align=\"center\">Baking a jalopeno cake: part 1.</hl>" <>
"<p>Start with a TESCO sponge cake mix, and prepare it according to
instructions until it is ready to be put in the oven.</p><p>Add
1 ounce of chopped jalopenos (or more, if desired) .</p> <p>Next step</p>" <>
"</p></body></html>";
page2 = "<html><body>" <>
"<hl align=\"center\">Baking a jalopeno cake: part 2.</hl>" <>
"<p>After thorough mixing, bake your cake in the oven according
to TESCO instructions. </p><p>While your cake is cooling, you
may wish to purchase some indigestion tablets just in case
you find the result a little tough on the stomach!</p> <p>Previous step</p>" <>
"</p></body></html>";
this.page = pagel;
Replacepage[] := (If[this.page == pagel, this.page = page2, this.page = pagel];
UpdateWidgetValue[this.page]) ;
SuperWidgetHTMLPanel [this.page, Background -» RGBColor[0.8, 0.8, 1]] // SuperGUIRunModal
Null

e Note: as you can see above, HTML text often contains quoted text. As is usual with Mathematica, to obtain a quote
character inside a string you must preceded it with a backslash character. Some care is required to do this correctly —
particularly in larger examples. You may wish to either read the HTML text from a file, and display it with FullForm,
which will show all the escape characters correctly. The result could then be pasted into your program. Alternatively, you
could read a file (or even something off the Internet, using GetURL) as your program executes.

e Observe that you could produce your entire application using links within HTML to drive it.

HTML strings can also be inserted in many other places where super widgets require text. This can be used to produce
extremely fancy buttons, combo boxes, tool tips, etc. See the section on using HTML strings inside super widgets.

©2006 David Bailey

56 The Super Widget Package

SuperWidgetTable

SuperWidgetTable [v, opts] Displays a table represented by the structure stored in the associated
variable v, which should contain a rectangular array of reals.

Table super widget

Table.Headings Can be set to an array of strings. The array should contain as many
elements as there are columns in the array.

ChangeFunction Function that will be called each time the data is changed by the user.
Takes one argument — the associated variable v.

Columns.Editable A list of boolean values or All or None - indicating which columns
can be edited.

Tool.Tip Specifies a tooltip string.

Pixel.Width Width in pixels, default 300. (scrolling will be used if the table size is
not set large enough).

Pixel.Height Height in pixels, default 200 (scrolling will be used if the table size is
not set large enough).

Digits.After.Point Defaults to Automatic, can be set to a list (one per column) of
integers specifying the number of digits after the decimal point used
to display Real data.

Options for Table super widget

This creates a grid of data values, which may optionally be edited. The control variable holds the array of data, which can be
real, integer, string, or boolean (True/False) and the columns can have title information. Here is a simple example:

Needs ["SuperWidgetPackage "]

z = IdentityMatrix[5] // N;
zinv = Inverse[z] // N;
tfn[_] := Module[{},
zinv = Inverse[z] // N;
UpdateWidgetValue[zinv] ;
17
hd = Table["Col " <> ToString[i], {i, 1, 5}];
{
{To, "Input table", 9o}, 910, SuperWidgetTable[z,
Table.Headings -» hd, Columns.Editable -» All, ChangeFunction -» tfn],
Q10
SuperWidgetTable[zinv, Table.Headings -» hd, Columns.Editable -» None],
T10, {90, SuperWidgetButton[Null, "OK", 1, Tool.Tip » "Press to finish"], 9o}} //
SuperGUIRun

- GUIObject =
Only the top array is editable, the bottom one displays the inverse of the matrix and is updated on the fly. The following
options may be used:

Table.Headings — Either Null, or a list of heading strings of the correct length for the number of columns of the

©2006 David Bailey

The Super Widget Package 57

matrix.

ChangeFunction — Function to be called when the data is changed by the user. The updated control variable will be
passed, and as usual, it may be useful to declare the function to have attribute HoldFirst.

Columns.Editable — Either a boolean array with an entry for each column to indicate if it is editable, or A11 or None.
Tool.Tip — String to be used as a tooltip.

Pixel.Width, Pixel .Height — Specify the size of the control. If the array is too large for the specified size, scroll
bars will be used.

Note carefully that data within each column should be either all integer or all Real — not mixed, fractional, or complex.
Typically you might want to use //N or the data as it is being set up.

Individual columns can be set up to display Real numbers in fixed point format (very useful for currency values) by using
the Digits.After.Point option. For example:

tt = Table[Random[] * 100, {k, 1, 3}, {3, 1, 3}1;

SuperWidgetTable[tt, Digits.After_.Point » {Automatic, 2, Automatic}] // SuperGUIRunModal

3
40. 743277423175, 17.897003793475..
53.3731931223145.. 94 6131333732893
77907047 307033. . 4.43943053151995. ..

- Graphics =

Here the centre column has been formatted in fixed format, the other two columns have been left with the Automatic setting.
Note that fixed format numbers must be suitable in size for display without an exponent. The fixed point display uses right

alignment.

SuperWidgetTree

SuperWidgetTree [v, opts] Displays a tree stored in the associated variable v.

Tree super widget

©2006 David Bailey

58 The Super Widget Package

Background Background colour — default RGBColor[1,1,1]

SelectionFunction Function that will be called when a leaf node is selected. The argu-
ment will be the associated variable.

Double.Click.Function Function that will be called a leaf node is double-clicked. The
argument will be the associated variable. The first click of the double
click will have already selected the node.

Tool.Tip Specifies a tooltip string.

Pixel.Width Width in pixels, default 300. (scrolling will be used if the table size is
not set large enough).

Pixel.Height Height in pixels, default 200 (scrolling will be used if the table size is
not set large enough).

Options for Tree super widget

Tree.Node [name, spare, sel] Represents a leaf (terminal) node with name and selection indicator
(0 or 1). The spare argument can be used to hold user data

Tree.Node [nanme, Represents a non-terminal node.
spare, sel, sub-node-1list]

Representation of tree structure
This creates a tree representation of a data structure, which should be setup as in this example:
Needs ["SuperWidgetPackage "]

x = Tree.Node["Language", 0, 0, {Tree.Node["French", 1,
0, {Tree-Node["Country", 0, 0], Tree.Node["Dictionary", 0, 0]}1],
Tree.Node["English", 0, 0, {Tree.-Node["Country", 0, 0], Tree.Node["England", 0, 0],
Tree.Node["USA", 0, 0], Tree.Node["Australia", 0, 0]}],
Tree.Node["Dictionary", 0, 0]}];

The first argument of each Tree .Node object is the name of that node, the second argument is spare, and could be used to
hold additional data. The third argument will be 1 if that node is selected, and the fourth argument is a list of sub-nodes of
the tree. It is omitted for a terminal node. The SelectionFunction option can be used to supply a function to be called
each time a selection is made. Here is a simple example which displays all the permutations of five objects as a tree:

©2006 David Bailey

The Super Widget Package 59

tree.fn[x] := Print[Cases[x, Tree-Node[_ , _, 1], =]];
build.tree[prefix String, items List] := Module[{s},
If[Length[items] == 0,
Tree.Node[prefix, 0, 0],
Tree.Node[prefix<>"...", 0, 0,
Map[build.tree[prefix <> ToString[#], DeleteCases[items, #]] &, items]
1
1
1;
x = build.tree["", {1, 2, 3, 4, 5}];
SuperWidgetTree[x, SelectionFunction -» tree.fn,
Pixel.Width - 300, Pixel_Height -» 300] // SuperGUIRunModal

{3

{Tree.Node[32415, 0, 1]}

A more substantial example of the use of this widget is included in the larger examples.

Tlp I | Use the single-click function to perform reversible operations, and the double-click function (if any) to

perform less easily reversed operations — the double click is a more deliberate act. Some people have difficulty performing a
double click - so it is helpful to provide a button that does the same operation.

SuperWidgetPanel

SuperWidgetPanel [v,widgetlistl, Creates a panel which contains other widgets. The
opts] panel is not itself visible,
but is useful as a way of grouping widgets for more elaborate layouts.

Panel super widget

Border.Color Border colour — default RGBColor[0,0,0],
or no border if Border.Size is not set. The
UK spelling — Border.Colour will also work.

Border.Size Border size — defaults to 0 unless Border.Color has been set, when it
defaults to 1.

Options for Panel super widget

A common use for a panel is to make a vertical display of buttons to be placed alongside another, larger control. For
example:

Needs ["SuperWidgetPackage "]

©2006 David Bailey

60

The Super Widget Package

txt = "To be or not to be\n(To be continued.....)R

{{{SuperWidgetPanel [Null,

{SuperWidgetButton [Null, "Testl", ££f£f],
SuperWidgetButton[Null, "Test2", £££f],
SuperWidgetButton [Null, "Test3", £££f],
SuperWidgetButton [Null, "Test4d", ££ff]

}

1, 90}, 910, SuperWidgetTextEditor[txt, Pixel_.Width » 300, Pixel_Height -» 200]}} //

SuperGUIRunModal

The border options can be used to achieve special effects, and can also sometimes be useful to pick out the location of
panels while trying to achieve particular layout designs.

SuperWidgetTabPanel

SuperWidgetTabPanel [v, { {<namel>
,widgetlistl}, ...}]

Creates a tab panel where each 'pane' has the specified name and
contents (more super widgets). This is useful for condensing a large
number of options into a small panel.

Tab panel super widget

Minimum.-Width

Forces a minimum width in pixels for the structure — to ensure the.
tabs are displayed in one line

Options for SuperWidgetTabPanel

This creates a tab panel, in which different super widgets are displayed on different panes which the user can select by
clicking on their names. The first argument is the controlling variable, the second is a list of pairs. Each pair represents one
sub-panel of this widget, and consists of a name and a list of super widgets to appear on that pane. All this is best illustrated

by a simple example:

Needs ["SuperWidgetPackage "]

Pl=1;p2=2;p3=3;p4=4;p5=5;p6=6;
SuperGUIRunModal [SuperWidgetTabPanel [tfr, {

{"Parameters 1, 2, 3", {

910, {"Parameter 1", SuperWidgetIntegerBox[pl]},

910, {"Parameter 2", SuperWidgetIntegerBox[p2]},

910, {"Parameter 3", SuperWidgetIntegerBox[p3]},

910

}} , {"Parameters 4, 5, 6", {
910, {"Parameter 4", SuperWidgetIntegerBox[p4]},

910, {"Parameter 5", SuperWidgetIntegerBox[p5]},

910, {"Parameter 6", SuperWidgetIntegerBox[p6]},

T10
}
}
}, Minimum.Width -» 250
1
1;

©2006 David Bailey

The Super Widget Package 61

The option Minimum.Width can be used to force the tabs to be laid out horizontally. If you remove this option from the
above example, the result is rather ugly.

SuperWidgetLabelledBox — grouping things in a pleasing
way

SuperWidgetLabelledBox [Creates a box with a label to group other widgets.The' contents'
v,label, contents, opts] should be a list of super widgets to include in the box.The
box edges appear as if scored into the surface of the window,
and the label is spliced in on the top edge.

Labelled box super widget

This widget is designed to make a scored rectangular box to group a set of controls within it. The arguments are control
variable, name of box, and a list of the controls to placed within it. For example:

Needs ["SuperWidgetPackage "]

{910, {T10, "Solution procedure", Y10}, Y10, SuperWidgetLabelledBox [
Null, "Integration method", {12¢, SuperWidgetRadioButtonGroup [k,
{"Analytic", "Series expansion", "Numerical integration"}], 920}]1,
910, {910, SuperWidgetButton[Null, "OK", 1], 9o}, 910} // SuperGUIRunModal

Wizards

A wizard (at least in the jargon of GUI interfaces!) is a window of fixed size which steps the user through a sequence of
operations. The left hand panel typically contains a list of all the steps with the current one highlighted. The right panel
contains the super widgets required to obtain the data. The user is free to use the buttons at the bottom to navigate through
the steps or to abort if he wishes. Wizards are top-level objects — in other words, they should not be embedded inside frames
or other widgets — they are analogous to frames or dialogs. In the SWP, wizards are created using SuperWidgetWizard,
and the individual pages of the wizard are represented by Wizard.Page objects.

SuperWidgetWizard|[v, contents, Creates wizard with the given contents, which should be a list of

opts] Wizard.Page objects. The control variable, v, is updated with number
of the current page which is on display (remember that this can move
in either direction).

Wizard super widget

©2006 David Bailey

62 The Super Widget Package

CloseFunction Function that is called when the wizard closes.

Side.Bar.Title Title for the left had panel.

Title Overall title.

Wizard.Steps A list of names for the various steps.

Page.Turn.Function Function to call (with the control variable as argument) each time a
new page is to be displayed.

Options for SuperWidgetWizard

Wizard.Page objects are not super widgets as such, and have no control variable, they are only used inside Superwid:-
getWizard.

Wizard.Page[contents,opts] Represents one page of a wizard with the given contents (a list of .
super widgets).

Wizard page object

Title Title for this page.

Options for Wizard.Page

A wizard is normally created using SuperGUIRunModal, which will return 1 for a successful completion of the wizard,
and 0 if the wizard is canceled or closed. It is important to test this value to avoid proceeding with a computation that the
user intended to cancel.

Each page of the wizard contains three navigation buttons, "Back", "Cancel", and "Next" or "Finish" as appropriate. Usually
some of these buttons need to be greyed out until suitable data has been supplied by the user. In the following numerical
integration example, the check.ok function prevents the user progressing to the third page of the wizard until he has
entered both limits, and it also tests that the result will not be complex in the case that the Sqrt function is selected.

Tlp I | Use Although it is tempting to avoid the extra complexity involved in controlling the button states, your user

will not thank you for the result! Part of the unwritten 'contract' of using a wizard is that the program checks the data and
keeps the user safe.

©2006 David Bailey

The Super Widget Package 63

gui.integral[] :=
Module[{fn, 1limit.1, 1limit.2, explanation.1l, explanation.2, ptf, check.ok},

fn = "Sin";

check.ok[_] := Module[{},

Print[limit.1, " ", limit.2, " ", NumericQ[limit.1]];
If[NumericQ[limit.1] &&
NumericQ[limit.2] && (fn # "Sqgrt" || (1imit.1 >0 && limit.2 20)),

Set.Wizard.Button.State[xxx, "Next", 2, True],
Set.Wizard.Button.State[xxx, "Next", 2, False]
1
1;

limit.1=.;
limit.2=.;
explanation.1l =

"Numerical integration operates on a \nfunction between numerical limits.
First you must choose the function:\n";
explanation.2 = "Now select the lower and upper bounds of integration\n";

ptf[page-no] := If[page.no == 3, Set.Label.Contents[result.var,
ToString[NIntegrate[ToExpression[fn] [x], {x, 1limit. 1, 1imit.2}]]11]1;

check.ok[0];
SuperGUIRunModal [SuperWidgetWizard [xxx, {Wizard.Page|[
{
explanation.l,
T10,

{"Requred function:",
SuperWidgetComboBox[fn, {"Sin", "Cos", "Sqrt"}, ChangeFunction - check.ok]}
}, Title -> "Select a function to integrate"], Wizard.Page[{explanation.2,

T10,

{"Lower limit: ", , SuperWidgetRealBox[limit.1l, ChangeFunction - check.ok]},
ﬂ[lO ’

{"Upper limit: ", , SuperWidgetRealBox[limit.2, ChangeFunction -» check.ok]}},

Title -> "Integration limits"],
Wizard.Page[{{"The result of the integral is",
SuperWidgetLabel [result.var, ""]}
}, Title -> "Result"]},
Side.Bar.Title -> "Things to do",
Title -> "Numerical integration wizard",
Wizard.Steps —» {"Select function", "Select limits", "View result"},

Page.Turn.Function - ptf]

©2006 David Bailey

64 The Super Widget Package

gui.integrall[]
1imit.1$24954 1imit.2$24954 False
0 1imit.2$24954 False

0 1 False

Humerical integration wizard

Things to do Integration limits
Select function Mow select the lower and upper hounds
Select limits Lovweer lirmit: | 0
View resut Upper limit: | 1]
4 Back | | Mext B

©2006 David Bailey

The Super Widget Package 65

Humerical integration wizard

Thing= to do Feszult
Select function The result of the integral 1= 0.841471
Select limitz

Yiew result

4 Back | |_Finish

Observe that a typical wizard contains a lot of super widgets (some for each page) and so may take a little longer to be
displayed. Note also that every page of the wizard is created at once — even though all but the first are initially covered up.
Thus, for example, if page 5 displays a graph created out of data collected on the previous four pages, you should supply a
'temporary graphic' to prevent problems.

Using UNICODE characters in input boxes

Java uses UNICODE for all its character manipulations — just like Mathematica. This means, that, in principle, UNICODE
characters can be used in input boxes (In other contexts, it is probably easier to use an image). There are several details to
consider:

e The normal Java font does not show all UNICODE characters, and some (unfortunately including \ [Breve]) are displayed
as modifiers of a previous character.

©2006 David Bailey

66 The Super Widget Package

e Although it is possible to paste UNICODE characters from Mathematica into Java input boxes, special provision, such as
the use of accelerators, must be supplied to input such characters otherwise.

Here is a simple example:

alpha[] := (
zz = zz<>"a";
UpdateWidgetValue[zz]
)i
beta[] := (
zz = zz<>"[B";
UpdateWidgetValue[zz]
)7
gamma[] := (
zz = zz<>"T'"";
UpdateWidgetValue[zz]
)i
zz = "a+f3+T'";
SuperWidgetFrame [Null, {{{i0, "Enter desired expression", Tip},
T10,
SuperWidgetStringBox[zz]
}, Menu -» {{"Char", {{"Alpha", alpha, "Alt-A"},
{"Beta", beta, "Alt-B"}, {"Gamma", gamma, "Alt-G"}}}}] // SuperGUIRunModal

Making arrays of widgets (new at Version 4.70)

Prior to version 4.70, it was quite hard to create an array of widgets because each widget required its own associated
variable. Now it is much easier to achieve this using an array expression. However a little care is still needed because the
array expression cannot contain variables because it is not evaluated immediately (super Widgets all have the HoldFirst
attribute). For example:

data = {10, 20, 30};
Table[With[{k = k}, SuperWidgetIntegerBox[data[[k]]]], {k, 1, 3}] // SuperGUIRunModal;

data

{10, 42, 30}

Note that the older way to achieve this remains valid, but is superceded by this new mechanism.

Variable scoping

Experienced users of Mathematica will have noticed that many of the SWP examples use globally scoped variables. This is
more or less inevitable because variables provide the 'glue' between the various widgets. For example, the variable that is
passed to SuperWidgetIntegerBox is also the variable you would use to grey out the box. For this reason, it is recommended
that you either use very long, distinctive names for global variables, or place SWP code inside a package. This can obvi-
ously be done after the code has been developed, and therefore none of the SWP examples have been complicated in this
way.

©2006 David Bailey

The Super Widget Package 67

Special restrictions applying to modeless windows

Normally it is suggested that you create windows using SuperGUIRunModal. This function will create a modal window
which takes control while it is visible (except if it creates additional windows). Modal windows have no special limitations.

Modeless windows — created using SuperGUIRun — are analogous to palettes in that they can be accessed by the user as
required — alongside other windows. A modeless window can also stay open after the Mathematica command that created it
has completed and the FrontEnd is waiting for the next command. Modeless windows are subject to the following restriction:

A top-level modeless window cannot open additional windows — i.e. a button, menu, etc. that attempts to create an addi-
tional window will cause a fault.

Note that a modal top-level window can create both modal and modeless windows and these are not subject to this restric-
tion because they are not top-level.

The modeless windows that are created as part of a multiple document interface (MDI) are also not subject to this restriction.

SuperWidgetDesktop, and the multiple document
interface.

Start.Point {x,y} location of first child window.

Options for SuperWidgetDesktop

Some GUI applications — such as word processors and image editors — use what is known (at least in Windows parlance) as
a multiple document interface (MDI). The application consists of one large window containing several movable smaller
windows within it. The user can work in any of these windows just by clicking between them (they are modeless among
themselves) and can also access controls from the back window (typically just a menu and toolbars) without obscuring the
various documents.

If you are designing an application in which you are thinking of using modeless windows, you should certainly consider if
MDI would be suitable.

Creating an MDI effect is extremely simple. You create the back window as a modal window (that will normally remain
visible for the entire duration of your program) in the normal way, but you include a SuperWidgetDesktop to represent the
bulk of the window that you wish to use to display documents. It is hard to illustrate this effect usefully in a trivial example,
but here is a program in which each time the File/New menu item is activated, a new text editor window is opened with a
random text string. Notice that each sub-window is given a title — otherwise the effect can be quite confusing. Note also that
the sub-windows must be opened by SuperGUIRun not SuperGUIRunModal.

©2006 David Bailey

68 The Super Widget Package

doc.no = 0;
New.Document[] := Module[{fr, str},
doc.no++;
str = FromCharacterCode [Table [Random[Integer, {65, 90}], {10}]1]~;
SuperWidgetFrame[fr, {
SuperWidgetTextEditor [str]
}, Desktop » ddd, Title -> "Example " <> ToString[doc.no]] // SuperGUIRun

1;

SuperGUIRunModal [SuperWidgetFrame [Null, {
SuperWidgetDesktop [ddd, {
Image-File[SuperWidgetPackagePath[] <> "\\ExampleFiles\\Consultancy.gif"]
}, Background -» RGBColor[1.0, 1.0, 0.7], Pixel.-Width -» 300, Pixel.Height -» 200]
}, Menu » {{"File", {{"New", New.Document}}}}]]

: E| |E| aileyconsultancy. ce

2 Example 2

METYFAIUVE

In the above example, I ran the above code, stretched the top window a little, and activated the File/New menu item twice.
Try the above example, and experiment with maximising the main window and/or one of the sub-windows.

©2006 David Bailey

The Super Widget Package 69

Get.Topmost.MDI.Frame[var] If var is the control variable of a SuperWidgetDesktop, returns the
control variable name (as a string) of the topmost child window.
Otherwise returns an empty string

Functions to control the behaviour SuperWidgetDesktop

Dynamic manipulation of basic data input widget
properties

The three super widgets — SuperWidgetIntegerBox, SuperWidgetRealBox, and SuperWidgetStringBox
have a number of properties that are handled automatically or set at startup. In certain cases it may be useful to adjust these
settings dynamically using the following functions:

Grab.Focus[v] Shifts the input focus to the widget associated with variable v.

Set.Editable[v,val] Sets the editability of the widget associated with variable v to the
value val (True or False).

Last.Focus.Time[v] Returns a representation in miliseconds of the time when the widget
associated with variable v last acquired focus.

Select.All[v] Selects all the text in the widget associated with variable v — which it
makes it easy for the user to type over the box.

Set.Text.Colour[v,colour] Sets the text colour of the widget associated with variable v. Any
Mathematica colour representation can be used.

Set.Text.Color[v,colour] Sets the text colour of the widget associated with variable v. Any
Mathematica colour representation can be used.

Set.Background.Colour[v,colour] Sets the background colour of the widget associated with variable v.
Any Mathematica colour representation can be used.

Set.Background.Color[v,colour] Sets the background colour of the widget associated with variable v.
Any Mathematica colour representation can be used.

Functions to control the behaviour of basic input widgets

Most of these functions are self explanatory, however the purpose of the function Last.Focus.Time may be less obvious.
Suppose you had a form with a number of input fields and you wished to know which one had focus at a given moment —
say from within a menu function. The problem is that the widget in question would momentarily lose focus when the menu
was activated, so merely seeking a widget that has focus is not particularly useful. However, by comparing the last focus
times of the various fields in question, it is possible to determine the box that has effective focus at a given instance.

Remembering what the user did last

Many GUI applications — such as Mathematica itself — remember various user-preferences both within a session and from
one session to another. For example, the first time that a user tries to open a file with your program, he or she will probably
have to navigate through the filestore to find the appropriate directory. This can be very tedious, and it is handy if he can
start the next file open dialog at the place where the previous file was located. To remember this information, a persistence
file name must be supplied:

©2006 David Bailey

70 The Super Widget Package

Set.Application.Dump.File[file]

This should be called at the start of a program. It will load any information from the file if it exists, and remember the name
of the file for subsequent operations. The string argument can be a complete path, or a simple file name, which will be
located in $UserBaseDirectory.

One of the simplest uses of this feature is to add the option Use.Last.Directory->True to the Open.File.Dialog or
Save.File.Dialog routines. In combination with the previous call, to set up the file to contain the information, this will
make the application remember where the user saves his files, and will be a huge time saver.

Future versions of the SWP may define further properties that can be preserved across sessions, but you can also define
properties of your own that operate in this way:

Add.Application.Variable[var]

This will associate the given variable with the persistence file already defined. To ensure that the latest values of all such
variables are saved away before an application exits, you should call:

Save.Application.Dump.File[]

Be aware, however, that data may be saved at other times.

Accessing the Java layer

Although the SWP has been designed to hide J/Link, and Java layers that underpin it, it is sometimes useful — or simply
interesting — to access the Java objects that implement the GUI. This can be achieved by passing any control variable
corresponding to an active widget to the Java.Widget function.

To understand how to use the Java object, consult the documentation for the J/Link package (which is automatically loaded
with the SWP).

For example, in the following code the Java object for the integer box is obtained and the setVisible method is invoked to
hide the widget!

Needs ["SuperWidgetPackage "]

v =42;

{¥10,

{910, "Here is an integer box waiting to be hidden!", 1o},
{910, SuperWidgetIntegerBox[v], 110},

T10,

{90, SuperWidgetButton[Null, "OK", 1], 1o},

T10

} // SuperGUIRun

- GUIObject =

©2006 David Bailey

The Super Widget Package 7

Java.Widget[v] @setVisible[False]

Here is an integer hox waiting to be hidden!

The integer box is only hidden, and can be made visible again by calling the setVisible method again with the argument
True. The entier set of available methods can be obtained by using the J/Link function Methods:

Methods [Java.Widget[v]]

boolean action(java.awt.Event, Object)

void addActionlListener (java.awt.event.ActionListener)

void addAncestorListener (javax.swing.event.AncestorListener)

void addCaretlistener (javax.swing.event.CaretListener)

void addComponentListener (java.awt.event.ComponentListener)

void addContainerListener (java.awt.event.ContainerListener)

void addFocusListener (java.awt.event.FocusListener)

void addHierarchyBoundsListener (java.awt.event.HierarchyBoundsListener)
void addHierarchyListener (java.awt.event.HierarchyListener)

void addInputMethodListener (java.awt.event.InputMethodListener)
java.awt.Component add(java.awt.Component)

java.awt.Component add(java.awt.Component, int)

void add(java.awt.Component, Object)

void add(java.awt.Component, Object, int)

void add(java.awt.PopupMenu)

void addKeyListener (java.awt.event.KeyListener)

static javax.swing.text.Keymap addKeymap (String, Jjavax.swing.text.Keymap)
void addMouselistener (java.awt.event.MouselListener)

void addMouseMotionListener (java.awt.event.MouseMotionListener)

void addMouseWheellListener (java.awt.event.MouseWheellListener)

void addNotify ()

void addPropertyChangelistener (java.beans.PropertyChangelListener)

void addPropertyChangelistener (String, java.beans.PropertyChangelListener)
java.awt.Component add(String, java.awt.Component)

void addVetoableChangelistener (java.beans.VetoableChangelListener)

void applyComponentOrientation (java.awt.ComponentOrientation)

boolean areFocusTraversalKeysSet (int)

java.awt.Rectangle bounds ()

int checkImage (java.awt.Image, int, int, Jjava.awt.image.ImageObserver)
int checkImage (java.awt.Image, java.awt.image.ImageObserver)

void computeVisibleRect (java.awt.Rectangle)

boolean contains(int, int)

boolean contains(java.awt.Point)

void copy ()

int countComponents ()

java.awt.Image createlImage (int, int)

java.awt.Image createlImage (java.awt.image.ImageProducer)

©2006 David Bailey

The Super Widget Package

javax.swing.JToolTip createToolTip ()
java.awt.image.VolatileImage createVolatilelImage (int, int)
java.awt.image.VolatileImage createVolatilelImage (int, int, java.awt.ImageCapabilities)
void cut ()

void deliverEvent (java.awt.Event)

void disable ()

void dispatchEvent (java.awt.AWTEvent)

void doLayout ()

void enable ()

void enable (boolean)

void enableInputMethods (boolean)

boolean equals (Object)

java.awt.Component findComponentAt (int, int)

java.awt.Component findComponentAt (java.awt.Point)

void firePropertyChange (String, boolean, boolean)

String, byte, byte)

String, char, char)

String, double, double)

String, float, float)

String, int, int)

void firePropertyChange
void firePropertyChange
void firePropertyChange
void firePropertyChange
void firePropertyChange

o~ o~~~ o~ —~

void firePropertyChange (String, long, long)

void firePropertyChange (String, short, short)
javax.accessibility.AccessibleContext getAccessibleContext ()
javax.swing.Action getAction()
java.awt.event.ActionlListener getActionForKeyStroke (javax.swing.KeyStroke)
java.awt.event.ActionListener[] getActionListeners()
javax.swing.ActionMap getActionMap ()

javax.swing.Action[] getActions ()

float getAlignmentX ()

float getAlignmentY ()

javax.swing.event.AncestorListener|[] getAncestorListeners()
boolean getAutoscrolls()

java.awt.Color getBackground ()

javax.swing.border.Border getBorder ()

java.awt.Rectangle getBounds ()

java.awt.Rectangle getBounds (java.awt.Rectangle)
javax.swing.text.Caret getCaret ()

java.awt.Color getCaretColor ()
javax.swing.event.CaretListener[] getCaretListeners/()

int getCaretPosition()

Class getClass/()

Object getClientProperty (Object)

java.awt.image.ColorModel getColorModel ()

int getColumns ()

java.awt.Component getComponentAt (int, int)
java.awt.Component getComponentAt (java.awt.Point)

int getComponentCount ()

java.awt.Component getComponent (int)
java.awt.event.ComponentListener[] getComponentListeners ()
java.awt.ComponentOrientation getComponentOrientation ()
java.awt.Component [] getComponents ()

int getConditionForKeyStroke (javax.swing.KeyStroke)
java.awt.event.ContainerListener|[] getContainerListeners ()
java.awt.Cursor getCursor ()

int getDebugGraphicsOptions ()

©2006 David Bailey

The Super Widget Package

static java.util.Locale getDefaultLocale ()

java.awt.Color getDisabledTextColor ()
javax.swing.text.Document getDocument ()

boolean getDragEnabled()

java.awt.dnd.DropTarget getDropTarget ()

char getFocusAccelerator ()

java.awt.Container getFocusCycleRootAncestor ()
java.awt.event.FocusListener[] getFocusListeners/()

boolean getFocusTraversalKeysEnabled ()

java.util.Set getFocusTraversalKeys (int)
java.awt.FocusTraversalPolicy getFocusTraversalPolicy ()
java.awt.Font getFont ()

java.awt.FontMetrics getFontMetrics (java.awt.Font)
java.awt.Color getForeground ()

java.awt.Graphics getGraphics ()
java.awt.GraphicsConfiguration getGraphicsConfiguration ()
int getHeight ()

java.awt.event.HierarchyBoundsListener[] getHierarchyBoundsListeners ()
java.awt.event.HierarchylListener|[] getHierarchyListeners ()
javax.swing.text.Highlighter getHighlighter ()

int getHorizontalAlignment ()

javax.swing.BoundedRangeModel getHorizontalVisibility ()
boolean getIgnoreRepaint ()

java.awt.im.InputContext getInputContext ()
javax.swing.InputMap getInputMap ()

javax.swing.InputMap getInputMap (int)
java.awt.event.InputMethodListener|[] getInputMethodListeners ()
java.awt.im.InputMethodRequests getInputMethodRequests ()
javax.swing.InputVerifier getInputVerifier ()

java.awt.Insets getlInsets()

java.awt.Insets getlInsets(java.awt.Insets)
java.awt.event.KeyListener[] getKeyListeners ()
javax.swing.text.Keymap getKeymap ()

static javax.swing.text.Keymap getKeymap (String)
java.awt.LayoutManager getLayout ()

java.util.EventListener[] getListeners (Class)
java.util.Locale getLocale()

java.awt.Point getLocation ()

java.awt.Point getLocation(java.awt.Point)

java.awt.Point getLocationOnScreen ()

java.awt.Insets getMargin ()

java.awt.Dimension getMaximumSize ()

java.awt.Dimension getMinimumSize ()
java.awt.event.MouselListener[] getMouselListeners/()
java.awt.event.MouseMotionListener|[] getMouseMotionListeners ()
java.awt.event.MouseWheellListener[] getMouseWheellisteners ()
String getName ()

javax.swing.text.NavigationFilter getNavigationFilter ()
java.awt.Component getNextFocusableComponent ()
java.awt.Container getParent ()

java.awt.peer.ComponentPeer getPeer ()

java.awt.Dimension getPreferredScrollableViewportSize ()
java.awt.Dimension getPreferredSize ()
java.beans.PropertyChangelListener[] getPropertyChangelisteners ()
java.beans.PropertyChangelListener[] getPropertyChangelisteners (String)

©2006 David Bailey

74

javax.swing.KeyStroke[] getRegisteredKeyStrokes ()
javax.swing.JRootPane getRootPane ()

int getScrollableBlockIncrement (java.awt.Rectangle, int, int)
boolean getScrollableTracksViewportHeight ()

boolean getScrollableTracksViewportWidth ()

int getScrollableUnitIncrement (java.awt.Rectangle, int, int)
int getScrollOffset ()

String getSelectedText ()

java.awt.Color getSelectedTextColor ()

java.awt.Color getSelectionColor ()

int getSelectionEnd()

int getSelectionStart ()

java.awt.Dimension getSize ()

java.awt.Dimension getSize (java.awt.Dimension)

String getText ()

String getText (int, int) throws javax.swing.text.BadLocationException
java.awt.Toolkit getToolkit ()

java.awt.Point getToolTipLocation (java.awt.event.MouseEvent)
String getToolTipText ()

String getToolTipText (java.awt.event.MouseEvent)
java.awt.Container getTopLevelAncestor ()
javax.swing.TransferHandler getTransferHandler ()

Object getTreeLock()

javax.swing.plaf.TextUI getUI ()

String getUIClassID()

boolean getVerifyInputWhenFocusTarget ()
java.beans.VetoableChangeListener[] getVetoableChangelisteners ()
java.awt.Rectangle getVisibleRect ()

int getWidth ()

int getX()

int getY ()

boolean gotFocus(java.awt.Event, Object)

void grabFocus ()

boolean handleEvent (java.awt.Event)

boolean hasFocus ()

int hashCode ()

void hide()

boolean imageUpdate (java.awt.Image, int, int, int, int, int)
java.awt.Insets insets()

boolean inside (int, int)

void invalidate ()

boolean isAncestorOf (java.awt.Component)

boolean isBackgroundSet ()

boolean isCursorSet ()

boolean isDisplayable ()

boolean isDoubleBuffered()

boolean isEditable ()

boolean isEnabled()

boolean isFocusable ()

boolean isFocusCycleRoot ()

boolean isFocusCycleRoot (java.awt.Container)

boolean isFocusOwner ()

boolean isFocusTraversable ()

boolean isFocusTraversalPolicySet ()

boolean isFontSet()

©2006 David Bailey

The Super Widget Package

The Super Widget Package 75

boolean isForegroundSet ()

boolean isLightweight ()

static boolean isLightweightComponent (java.awt.Component)
boolean isManagingFocus ()

boolean isMaximumSizeSet ()

boolean isMinimumSizeSet ()

boolean isOpaque ()

boolean isOptimizedDrawingEnabled ()

boolean isPaintingTile ()

boolean isPreferredSizeSet ()

boolean isRequestFocusEnabled ()

boolean isShowing()

boolean isValid()

boolean isValidateRoot ()

boolean isVisible()

boolean keyDown (java.awt.Event, int)

boolean keyUp(java.awt.Event, int)

void layout ()

void list()

void list(java.io.PrintStream)

void list(java.io.PrintStream, int)

void list(java.io.PrintWriter)

void list(java.io.PrintWriter, int)

static void loadKeymap (javax.swing.text.Keymap, javax.swing.text.JTextComponent$KeyBin
java.awt.Component locate(int, int)
java.awt.Point location()

boolean lostFocus(java.awt.Event, Object)
java.awt.Dimension minimumSize ()
java.awt.Rectangle modelToView (int) throws javax.swing.text.BadLocationException
boolean mouseDown (java.awt.Event, int, int)
boolean mouseDrag(java.awt.Event, int, int)
boolean mouseEnter (java.awt.Event, int, int)
boolean mouseExit (java.awt.Event, int, int)
boolean mouseMove (java.awt.Event, int, int)
boolean mouseUp(java.awt.Event, int, int)
void moveCaretPosition (int)

void move (int, int)

void nextFocus ()

void notify ()

void notifyAll ()

void paintAll (java.awt.Graphics)

void paintComponents (java.awt.Graphics)

void paintImmediately(int, int, int, int)
void paintImmediately (java.awt.Rectangle)
void paint (java.awt.Graphics)

void paste()

void postActionEvent ()

boolean postEvent (java.awt.Event)
java.awt.Dimension preferredSize ()

boolean preparelmage (java.awt.Image, int, int, java.awt.image.ImageObserver)
boolean preparelmage (java.awt.Image, Jjava.awt.image.ImageObserver)
void printAll (java.awt.Graphics)

void printComponents (java.awt.Graphics)

void print (java.awt.Graphics)

void putClientProperty (Object, Object)

©2006 David Bailey

76

The Super Widget Package

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

read(java.io.Reader, Object) throws java.io.IOException

registerKeyboardAction (java.awt.event.ActionlListener, javax.swing.KeyStroke, int)
registerKeyboardAction (java.awt.event.ActionListener, String, javax.swing.KeyStro
removeActionlListener (java.awt.event.ActionListener)

removeAll ()

removeAncestorListener (javax.swing.event.AncestorListener)

removeCaretlListener (javax.swing.event.CaretListener)

removeComponentListener (java.awt.event.ComponentListener)

removeContainerListener (java.awt.event.ContainerListener)

removeFocusListener (java.awt.event.FocusListener)

removeHierarchyBoundsListener (java.awt.event.HierarchyBoundsListener)
removeHierarchylListener (java.awt.event.HierarchyListener)
removelInputMethodListener (java.awt.event.InputMethodListener)

remove (int)

remove (java.awt.Component)

remove (java.awt.MenuComponent)

removeKeyListener (java.awt.event.KeyListener)

static javax.swing.text.Keymap removeKeymap (String)

void
void
void
void
void
void
void
void
void
void
void
void
void

removeMouseListener (java.awt.event.MouseListener)
removeMouseMotionListener (java.awt.event.MouseMotionListener)
removeMouseWheellistener (java.awt.event.MouseWheellListener)
removeNotify ()

removePropertyChangelistener (java.beans.PropertyChangelistener)
removePropertyChangelListener (String, java.beans.PropertyChangelListener)
removeVetoableChangelListener (java.beans.VetoableChangelListener)
repaint ()

repaint (int, int, int, int)

repaint (java.awt.Rectangle)

repaint (long)

repaint (long, int, int, int, int)

replaceSelection (String)

boolean requestDefaultFocus ()

void

requestFocus ()

boolean requestFocus (boolean)
boolean requestFocusInWindow ()

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

resetKeyboardActions ()

reshape (int, int, int, int)

resize (int, int)

resize (java.awt.Dimension)
revalidate ()

scrollRectToVisible (java.awt.Rectangle)
selectAll ()

select (int, int)

setActionCommand (String)
setAction(javax.swing.Action)
setActionMap (javax.swing.ActionMap)
setAlignmentX (float)

setAlignmentY (float)

setAutoscrolls (boolean)
setBackground (java.awt.Color)
setBorder (javax.swing.border.Border)
setBounds (int, int, int, int)
setBounds (java.awt.Rectangle)
setCaretColor (java.awt.Color)
setCaret (javax.swing.text.Caret)

©2006 David Bailey

The Super Widget Package

77

void setCaretPosition (int)

void setColumns (int)

void setComponentOrientation (java.awt.ComponentOrientation)
void setCursor(java.awt.Cursor)

void setDebugGraphicsOptions (int)

static void setDefaultLocale (java.util.Locale)
void setDisabledTextColor (java.awt.Color)

void setDocument (javax.swing.text.Document)

void setDoubleBuffered (boolean)

void setDragEnabled (boolean)

void setDropTarget (java.awt.dnd.DropTarget)

void setEditable (boolean)

void setEnabled (boolean)

void setFocusable (boolean)

void setFocusAccelerator (char)

void setFocusCycleRoot (boolean)

void setFocusTraversalKeysEnabled (boolean)

void setFocusTraversalKeys (int, java.util.Set)
void setFocusTraversalPolicy (java.awt.FocusTraversalPolicy)
void setFont (java.awt.Font)

void setForeground(java.awt.Color)

void setHighlighter (javax.swing.text.Highlighter)
void setHorizontalAlignment (int)

void setIgnoreRepaint (boolean)

void setInputMap (int, javax.swing.InputMap)

void setInputVerifier (javax.swing.InputVerifier)
void setKeymap (javax.swing.text.Keymap)

void setLayout (java.awt.LayoutManager)

void setlLocale(java.util.Locale)

void setLocation(int, int)

void setLocation(java.awt.Point)

void setMargin(java.awt.Insets)

void setMaximumSize (java.awt.Dimension)

void setMinimumSize (java.awt.Dimension)

void setName (String)

void setNavigationFilter (javax.swing.text.NavigationFilter)
void setNextFocusableComponent (java.awt.Component)
void setOpaque (boolean)

void setPreferredSize (java.awt.Dimension)

void setRequestFocusEnabled (boolean)

void setScrollOffset (int)

void setSelectedTextColor (java.awt.Color)

void setSelectionColor (java.awt.Color)

void setSelectionEnd (int)

void setSelectionStart (int)

void setSize (int, int)

void setSize(java.awt.Dimension)

void setText (String)

void setToolTipText (String)

void setTransferHandler (javax.swing.TransferHandler)
void setUI (javax.swing.plaf.TextUI)

void setVerifyInputWhenFocusTarget (boolean)

void setVisible (boolean)

void show ()

void show (boolean)

©2006 David Bailey

78

The Super Widget Package

Needless to say, only a small proportion of these methods can be usefully called in this context!

java.

awt.Dimension size()

String toString()

void
void
void
void
void
void
void
void

transferFocus ()

transferFocusBackward ()
transferFocusDownCycle ()

transferFocusUpCycle ()

unregisterKeyboardAction (javax.swing.KeyStroke)
update (java.awt.Graphics)

updateUI ()

validate ()

int viewToModel (java.awt.Point)

void
void
void
void

wait (long, int) throws InterruptedException

wait (long) throws InterruptedException

wait () throws InterruptedException
write(java.io.Writer) throws java.io.IOException

Snapshot mode

Most of the examples in this guide are illustrated with pictures of the resultant windows. The pictures were created by using
snapshot mode. Calling SetSnapshotMode [] will display a small window containing a camera and a count of stored
images (initially 0). Each time you click on the camera, an image of every open SWP window (except the camera!) is

recorded. These images can be obtained as Graphics objects using GetSnapshots|[]

using Show. Simply close the camera window when you are finished with it.

and displayed in the usual way

An older version of this mechanism which recorded windows as they were closed was discontinued at version 2.81 in favour
of this new, more flexible scheme. For partial compatibility, a call to SetSnapshotMode [True] will execute in the
same way as SetSnapshotMode[].

As of version 4.16, there is also a function that will take a picture of any control or whole window specified by control

variable:

x =42;

SuperWidgetFrame [fff, {SuperWidgetIntegerBox[x]}] // SuperGUIRun

Snap.Component [fff] // Show

Snap.Component[x] // Show

Note that for this routine to work correctly, the window in question must be on screen, although it may be obscured by other
windows. It will be brought to the front as part of this operation.

Additional functions

The following functions help in constructing your GUI interface.

©2006 David Bailey

The Super Widget Package 79

Set.Enabled.Status[var, True/False] — This will enable/disable a control. You can also enable/disable menu
items by passing the name of the corresponding function. By default, everything is enabled. This function can be called
before the window is displayed, to set things up initially, or on the fly to change a setting. For example, it may make sense to
start with a 'Save' option greyed out (disabled) until the user has done something that might need saving. It is always worth
disabling features that are unusable in particular contexts — because it makes your GUI interface easier to use, and you don't
have to worry about what might happen if your code is called when it does not make sense.

Message.Beep[] — This creates a beep sound via Java. Beeps are useful to remind the user that he has made an error,
and are also often useful while debugging a GUI application. Later version of this function may take an argument to deter-
mine the type of noise produced.

UpdateWidgetValue [var] — The value of a widget — e.g. the number displayed in a SuperWidgetReal box — can
be changed programmatically using this function. You alter the value of a super widget's associated variable as desired, and
then call this function to make the change visible. By design, no ChangeFunction calls are made in response to this,
because this could easily result in an infinite loop. Call any functions directly if necessary. This function has not (yet) been
implemented for all types of Super Widgets, and obviously does not even make sense in all cases. It will fault where not
available.

GetURL [string] — This is a tidied up version of the function defined in the J/Link help files. You give it a URL string
and it copies the data from the internet to a temporary file and returns the name of the temporary file as its result (which you
can then open with OpenRead). If this process fails for any reason, $Failed is returned. Because the internet is never
100% reliable, you should always test for the $Failed return value.

HTTP.Post [address, {{namel,valuel}..}] — Performs an HTTP POST operation (equivalent to an HTML form)
to the given URL. The second argument should be a list of 2-element sub-lists of the form {name,value}. For example,
consider the following HTML form:

<html><head><title>My Form</title></head><body>

<form action='http://something.com/process.php' method="post'>
<input type='text' name='mydata' size='60"'/>

<input type='submit'/>

</form>

</body>

</html>

This would display a text input box whose contents could be submitted to a website by pressing the 'submit' button. Say the
text was 'Hello', the same operation could be achieved using the following call:

Needs ["SuperWidgetPackage "]
HTTP.Post["http://something.com/process.php", {{"mydata", "Hello"}}]

In a more complex HTML form with several sections, each section would have a different name — so in the corresponding
call to HTTP. Post, the list of name/value pairs would contain several terms.

If this function succeeds, it returns whatever string of data is sent by the website. If it fails (which is always possible with
operations involving the internet) it returns $Failed — so it is important to test for this value.

The following at example illustrates the use of this function to communicate with the SWP site.

Color.Chooser.Dialog[] — Displays a dialog to permit the user to select a colour. The value is returned as an
RGBColor value.

©2006 David Bailey

80 The Super Widget Package

File.Open.Dialog[] — Displays a dialog to permit the user to select an existing file. If the user selects a file, it is
returned as a string (ready to be opened by OpedRead), Null is returned if no file is selected. This function can also take a
string argument to label the dialog box.

File.Save.Dialog[] — Displays a dialog to permit the user to select a file to be written. If the user selects a file, it is
returned as a string (ready to be opened by OpenWrite), Null is returned if no file is selected.

Close.Frame [var,opts] — Closes the window whose SuperWidgetFrame has the given associated variable, or the
window that contains a widget controlled by variable var. Typically called in an 'Exit' menu. The option Return.Value
can be used to specify an integer value to be returned by SuperGUIRunModal.

Java.Console.Print [args] — Prints its arguments on the Java console, creating the console if necessary. This can
be useful to debug GUI applications, particularly those that use concealed notebooks or are stand-alone. Also, once the
console has been created, any messages that are generated by Java code (e.g. calls to System.out.println) will also be
displayed.

Get.Screen.Size[] — Returns the size in pixels of the screen as a 2-element list.

Using HTML inside super widgets

As you know, the SWP is based on Java to create the actual GUI. This means that you can exploit a very neat feature of the
Java/Swing classes. If you put an HTML string into controls such as SuperWidgetButton, SuperWidgetComboBox, tool-tip
options, etc. this will be displayed as HTML — not as a boring text string. This can be used to generate some amazing
effects, including the use of images (although, it would seem animated GIF's sometimes only display their first frame), text
in several fonts and/or special layout, mixed text and images, etc. Bear in mind that the images you use can, if you wish,
have been created on the fly by your Mathematica code!

Here we put images and text in a combo box:
Needs ["SuperWidgetPackage "]

myFileName[z , description] := "<html><img src=\"file:" <> SuperWidgetPackagePath[] <>
"/ExampleFiles/" <> z <> "\"><p>" <> description <> "</html>";

©2006 David Bailey

The Super Widget Package

81

x=1;
txt = "";
{
Q10
{910, "Select the component you wish to simulate", 910},
Y10,
{110, "Component: ", SuperWidgetComboBox[x,

Map [myFileName[# <> ".gif", #] &, {"capacitor", "diode", "resistor"}]], Ti0},

Y10,

SuperWidgetTextEditor[txt, Pixel.Height -» 200],

T10
} // SuperGUIRunModal

Select the companent you wish to simulate

Component:

capacitar

resistar

Note that it would be better to select images of the same size for this job!

extract the position of the selected item (1,2,etc.) rather than work with the HTML string.

Here we are using an image as a tool tip:

Tlp ! |Ina practical application with a ChangeFunction it might be convenient to call ComboBox.Index[x] to

©2006 David Bailey

82 The Super Widget Package

c3==1.0;
SuperWidgetFrame [Null, {10,
{910, "The following variable should be changed with great care.", 110},
T10,
{"C3: ", SuperWidgetRealBox[c3, Tool.Tip -> "<html><img src=\"file:" <>
SuperWidgetPackagePath[] <> "/ExampleFiles/warning.gif" <> "\"></html>"1},
Y10,
{90, SuperWidgetButton[Null, "OK", 1], 1o},
T10
}1 // SuperGUIRunModal

The following variable should be changed with great care.

HTML can also be used to create an implicit SuperWidgetLabel, as the label of a button, as the labels of a tree, and in many
other places. However, not everywhere can process HTML — for example, the title of a frame or of a SuperWidgetLa-
belledBox will not accept HTML. You should test the you can use HTML in a particular way before relying on it. In some
cases — such as tree widgets — Java does not seem to allow enough space to display the HTML. Also, since this is a property
of the underlying Java implementation, there may be some variability between different platforms.

Tlp I |As you can see, HTML strings make some aspects of the SWP a little redundant. I must admit, I only discov-

ered this feature of the Java swing classes fairly late in the development of the SWP. However, I suspect there may still be
value in using features such as Image.File when they are sufficient rather than creating an HTML string. For simple
tasks the old notation is much easier to use, and I also suspect there is additional overhead involved in loading and executing
the general-purpose HTML layout code.

User-defined super widgets

Even using the SWP, definitions of large and complex windows can easily become messy and repetitious. One way to
reduce the clutter is to define your own super widgets.

Define.Super.-Widget[widget:>widgets] Define a new super widget in terms of one or more built—
in super widgets.

For example, consider the following definition:

Needs ["SuperWidgetPackage "]

©2006 David Bailey

The Super Widget Package 83

SetAttributes[realPrompt, HoldFirst];
Define.Super.Widget[
realPrompt[x , p String] =» {{"Parameter ", p, SuperWidgetRealBox[x]}}]

ReplaceAll::reps :
{835., 320.5, 311.5} is neither a list of replacement rules nor a valid

dispatch table, and so cannot be used for replacing. More..
{realPrompt[vl, "V1"], realPrompt[v2, "V2"], realPrompt[v3, "V3"]} // SuperGUIRunModal

GetSnapshots[] // Show;

The system will fault if you try to define a super widget which does not have attributes HoldFirst or HoldAll, or is
otherwise malformed. Notice in particular that the definition uses :» (RuleDelayed), so that the right hand side of a
definition can contain arbitrary chunks of Mathematica code to determine what finally gets displayed. The only requirement
is that the end result is a widget, or list of widgets and layout.

As you know, a simple list of super widgets is displayed vertically, nested lists, horizontally, etc. Within a user-defined
super widget, the top level list is displayed vertically, etc., regardless of the nesting of the user defined super widget within
the window as a whole. Thus a user defined super widget can be thought of as a self-contained widget in its own right.

The first argument to a user-defined super widget must be an associated variable (or Nul1l), just as with the built-in super
widgets, however a user-defined widget may have attribute HoldA11 — which enables it to pass on additional arguments as
control variables to the various super widgets into which it resolves.

Concealing notebooks

If you have being trying the examples as you read this user guide, you may already have encountered the problem that Java
windows can easily be obscured by a Mathematica notebook. The end user (who may be fairly naive) may start a GUI
application and then click on the notebook. If the application opens with a modal window, this may give the impression that
Mathematica has hung, because the only thing that will accept input is out of sight!

This is a problem which is inherited from J/Link. It is caused by the fact that the Java windows are run as a separate process
(connected by MathLink) — so the operating system treats the Mathematica FrontEnd (which is displaying the notebooks)
and the Java windows as two completely independent applications that can obscure each other on the screen.

The problem is only really relevant to modal windows, since modeless windows are meant to be susceptible to being
overlaid by other things (c.f. palettes).

One partial solution to this problem is to use the option ConcealNotebooks->True on SuperGUIRunModal. This
option will hide all open notebooks while the modal window is displayed, and make them visible when the window finally

©2006 David Bailey

84 The Super Widget Package

closes. It should be used on the main window of an application. If this option is used, it is suggested that it be used on
complete and tested applications. This is because if the application aborts in some way, you may be left with your notebook
hidden — possibly with unsaved changes.

Another solution to the problem of notebooks obscuring Java windows is to set up a stand-alone program.

Stand alone programs

A stand-alone program executes using the MathKernel program — without displaying the frontend or any notebooks. The
idea is that the entire user interaction is via Java windows. In this way, it is possible to create applications that have all the
'look and feel' of conventional applications that do not use Mathematica.

Although certain simple stand-alone programs were possible prior to version 4.00, various problems with GUIKit prevented
the serious exploitation of this feature. One appeal of a stand alone program is that the end user need not be distracted by the
presence of Mathematica (and there is no problem of a notebook obscuring the Java window). Indeed, the end user might
not even be aware that Mathematica was being used in the calculation at all.

It is possible to start a kernel-only Mathematica session that reads and executes a .m file (not a notebook) and never displays
a window of any kind. Thus, if the .m file contains code to display a super widget this will operate in a totally uncluttered
fashion. Furthermore, the program can be developed and debugged from within a Mathematica notebook, and written to the
.m file using the AutoGeneratedPackage facility.

"c:\program files\wolfram research\mathematica\5.1\Mathkernel" -mathlink -initfile testl.m
The -mathlink option suppresses even the kernel window from showing, so you may wish to omit this option while testing.
If you anticipate running your program in this way, it is important not to use any features that require the FrontEnd.

See the next section for a more convenient way to start applications using the kernel.

Creating programs that start when you double-click their
data files

Although it is still possible to start the MathKernel directly to run such programs, as of version 6.24, there is a much more
elegant option. Think for a moment of a typical Windows application, such as Word for Windows (or Libre Office, if you
prefer). Such applications can be started by double-clicking on one of their data files (on the desktop, in Explorer, or in
certain other contexts). This feature is actually very useful, and using the SuperWidgetPackage, this is possible for Mathemat-
ica applications.

To use this feature, you first need to select an unused file suffix to refer to your kind of data. Take great care to avoid
commony used suffices, particularly those in use on your machine. It may be worth GOOGLEing your suffix to make sure it
is not already in use. There is no restriction to 3-character suffixes, and longer ones are more likely to be unique. As an
example, suppose your program dealt with astronomical data, you might decide to let your data files end with the suffix
.STAR.

Clearly, when you start your Mathematica application from an icon, neither Mathematica, nor your application will nor-
mally be active, so, just as with other Windows applications, this information has to be enetered ahead of time, and is then
stored in the Windows registry for future use. To perform this task, execute the following function call:

©2006 David Bailey

The Super Widget Package 85

Install_.MathLauncher.Application["c:\\prog\\StarCalculator.m",
".star", "StellarDataFile",
"Stellar data file",
"c:\\\Data\\stellar data.ico",
"SplashScreen" -> "c:\\Data\\SplashStarCalculator.jpg",
"UseFrontEnd" - False];

e This function only needs to be executed once to make the necessary file associations, but it can be executed more than
once, without causing any problems, so you may want to simply execute it each time the application is run.

e An application can be associated with more than one kind of data — simply call this function once for each file suffix you
need to register.

e The data within the file can be text or binary, as required.

e Setting "UseFrontEnd" — True, will, of course, open the application in the front end. This is not normally useful for
finished applications, but it may be useful for development, or for other applications.

e The splash screen is vital because your user needs this for visual feedback that his data is being opened (otherwise, he
may click again). It normally appears very quickly, before the actual loading of Mathematica, which may impose a delay
before your program can start working. If you set this argument to Null, the SWP will use an amusing image instead!

e Argument 4 is used as a tooltip if the user hovers over the icon for a .STAR data file.

e When your application is started from a data file, the full pathname of that file will be placed in the Global variable,
MathLauncherSuppliedOpen. If ValueQ[MathLauncherSuppliedOpen] returns False, the application was started convention-
aly. The path will include the file suffix, so this can be tested if the application can accept several types of data:

If[ToUpperCase[FileExtension[MathLauncherSuppliedOpen]] == ".STAR", doSomething[]];

e Note that you can also create an association to an extra data type — say .STARAPP — which can be used to create an icon
on the desktop that just starts your application with no actual data (the data file can contain anything). In this case, your
application will examine the data file name, and determine that the file extension is .STARAPP, and not open it. You should
use an icon for such a file type that suggests your application as a whole.

e Some windows applications, such as word processors, allow more than one data file to be open at once. If your applica-
tion is complex enough for this to be useful to you, and you are using the SWP for your GUI, you can proceed as follows:

Supply a definition for the function SuperWidgetPackage ' MathLauncher.Open[file], and supply a file name to the follow-
ing function:

Set.Command.File[commandFile]

The file will not normally exist, but should be writable — it is required internally by the SWP. Using this feature, subsequent
files that are opened while your application is active, will result in a call to your supplied open function at a_ time when your
GUI is otherwise idle.

Utility functions

Close.Frame [V] Closes the window whose frame (or dialog window) is associated
with v or which contains a super widget associated with v.

©2006 David Bailey

The Super Widget Package

Color.Chooser.Dialog[]

Colour.Chooser.Dialog]|]

Define.Super.Widget |
widgetwidgets]
File.Open.Dialog][]
File.Open.Dialog[str]
File.Save.Dialog][]
File.Save.Dialog[str]
Get.Screen.Size []

GetSnapshots|[]

GetURL [url-name]

HTTP.Post [address,
{{namel,valuel} ..}]

Image.Boxes [boxes]

Image.Expression [expr, form]

Image.File[v,opts]

Image.String[v, opts]

Interval.Timer [secs, func]

Displays a dialog to select a colour. Returns an RGBColor value,
or Null if nothing was selected.

Synonym for Color.Chooser.Dialog.

Define a new super widget (in terms of one or more built—
in super widgets or GUIKit widgets).

Displays a file—open dialog,
and returns the file selected (as a string) or Null.

Displays a file—open dialog labelled by the specified string,
and returns the file selected (as a string) or Null.

Displays a file—save dialog,
and returns the file selected (as a string) or Null.

Displays a file—save dialog labelled by the specified string,
and returns the file selected (as a string) or Null.

Returns the width and height of the screen in pixels as a 2—
element list.

Returns a list of snapshots recorded
since SetSnapshotMode[True] was called.

Copies the data at the given URL into a temporary file,
which is returned as the result. If the operation fails for any reason,
$Failed is returned.

Performs an HTTP POST operation (equivalent to an HTML form)
to the given URL. The second argument should be a list of 2—
element sub— lists of the form {name,value}. If

the operation fails $Failed is returned,

otherwise the response by the website is returned as a string.

This does not evaluate directly,
but is used to wrap boxes (as made by ToBoxes)
being sent to super widgets that can take images.

This does not evaluate directly,

but is used to wrap an expression (such as Sqrt[X]) to be converted
to an image in the specified form (default StandardForm)

and sent to super widgets that can take images.

This does not evaluate directly,
but is used to wrap the path—name of a file containing
an image to be sent to super widgets that can take images.

This does not evaluate directly,
but is used to wrap strings (as made by ExportString)
being sent to super widgets that can take images.

Interval.-Timer[secs,func] —Initiates a one—

shot timer that calls func[] after the given number of seconds
(which need not be integer). Note that the function can

call Interval.Timer again to create a (safe) repeating timer.

©2006 David Bailey

The Super Widget Package

87

Java.Console.Print [args]

Java.Widget [v]

LiveGraphics3DApplet [V]

Message.-Beep][]

Mouse.Button.Info[Vv]

Mouse.Position[V]

Open.SuperWidget .Log[]

SetSnapshotMode [mode]

Set.Wizard.Button.State([v,
button-name, page-no, True/False]

Set.Enabled.Status]|

v, True/False]

Set.Label.Contents[v,value]

Set.Mouse.Mode [v, gv, mode]

Set.Variable.Options[v, opts]

Prints arguments on the Java console — useful to debug GUI
applications that use concealed notebooks or are stand—alone.

Returns the Java object (ready for use with J/Link)
corresponding to the widget with control variable, v.

If v is the associated variable for a LiveGraphics3D super widget,
this will return the raw applet so that J/Link calls can be made to it.

Generates a beep via Java.

Returns additional information about a mouse

action performed in a SuperWidgetGraphicsPanel. The

variable v should be the control variable for the

whole SuperWidgetGraphicsPanel for mouse moves

(which are handled on a per— panel basis) or the control variable
of the relevant Graphics.Region. This function is not relevant in

the case of drag operations. The information is returned as a list.

Returns the position of the mouse in the
Graphics.Region with control variable v. The coordinates
are in the coordinate system of the whole graphics area,
but if the mouse is not within the given graphics area,
this function returns {Intermediate,Intermediate}.

Opens an extra notebook to contain assorted logging
information associated with the SuperWidgetPackage —
mainly intended for internal debugging of the SWP.

Argument mode can be True or False. Sets a mode to tell
the system to record a snapshot of a window whenever it
is closed. These snapshots (Graphics objects) are returned
as a list by calling GetSnapshots[]. This function can be
used before or during the time that a window is displayed.

Enables/disables the given button on a particular page
of a wizard that has been created with control variable
v. The button names are strings and are case—insensitive.

Enables/disables the super widget with associated variable v. This
can be called before the relevant super widget has been created,

in which case it sets its initial state,

or it may be called while the super widget is live, to change its state.

Changes the value of the label

with control variable v to the given value,

which may be text or image. However, this function cannot
convert a text label into an image label or vice—versa.

Changes the Mouse.Mode setting for the
Graphics.Region with control variable gv associated with
the SuperWidgetGraphicsPanel with control variable v.

This can be used to associate options with the

variable v. These options are used when a super widget is
subsequently created with v as its associated variable. This
feature can help to avoid clutter in super widget declarations.

©2006 David Bailey

88 The Super Widget Package

ShowMessageBox [This is a convenience function to display a text message in a

message, title,button-list] modal dialog box with a title and a number of buttons supplied
as a list of strings. The box closes when a button is pressed,
and it returns the number of the button pressed.

Using.PlayerPro[] Returns True if the program is running under
Mathematica PlayerPro. This function can be useful
to avoid executing code that will not work under
PlayerPro (such as using Get on unencrypted files).

Kernel.Only.Mode[] Returns True if the program was started from MathKernel.exe rather
than from the frontend. By starting a program from MathKernel,
it is possible to create a GUI application in which only Java
windows are visible. This is ideal for applications that will
be used by people uninterested in Mathematica as such.

SuperWidgetPackagePath [] Returns the full path name of the directory containing the
SuperWidgetPackage. This is mainly useful to calculate the path
of the various files contained in the ExampleFiles directory.

UpdateWidgetValue [v, opts] If v is associated with a super widget that displays its value,
the widget will be updated to reflect any
change in the value of v performed by the program. The
ChangeFunction is not called in this situation to avoid a
possible infinite loop. Use the option Use ReCalibrate—>
True to force the re—calibration of a SuperWidgetGraphicsPanel.

Update.Graphics| This function is now obsolete
v,graphics, opts]

Larger examples

The examples in this guide have been mostly very small. A collection of rather larger examples is available at http://www.d-
baileyconsultancy.co.uk/swp_examples/swp_examples.html

If you feel you have constructed an interesting GUI application using the Super Widget Package, and would like to con-
tribute it to this collection, please contact me.

©2006 David Bailey

